CosmicOS full message
# Author: Paul Fitzpatrick, paulfitz@csail.mit.edu # Copyright (c) 2005 Paul Fitzpatrick # # This file is part of CosmicOS. # # CosmicOS is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # CosmicOS is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with CosmicOS; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #
0. introduce numbers (in unary notation)
# Here we count up, go through some primes, etc. # There is some syntax around the numbers, but that doesn't # need to be understood at this point. # Any 'words' written here are converted to arbitrary integers # in the actual message. Any word ending in -in-unary will be given # in unary rather than the binary code used in the main body # of the message.
intro-in-unary U1U;
intro-in-unary U11U;
intro-in-unary U111U;
intro-in-unary U1111U;
intro-in-unary U11111U;
intro-in-unary U111111U;
intro-in-unary U1111111U;
intro-in-unary U11111111U;
intro-in-unary U111111111U;
intro-in-unary U1111111111U;
intro-in-unary U11111111111U;
intro-in-unary U111111111111U;
intro-in-unary U1111111111111U;
intro-in-unary U11111111111111U;
intro-in-unary U111111111111111U;
intro-in-unary U1111111111111111U;
intro-in-unary U11U;
intro-in-unary U111U;
intro-in-unary U11111U;
intro-in-unary U1111111U;
intro-in-unary U11111111111U;
intro-in-unary U1111111111111U;
intro-in-unary U1U;
intro-in-unary U1111U;
intro-in-unary U111111111U;
intro-in-unary U1111111111111111U;
1. introduce equality for unary numbers
# The intro operator does nothing essential, and could be # omitted - it just tags the first use of a new operator. # The = operator is introduced alongside a duplication of # unary numbers. The meaning will not quite by nailed down # until we see other relational operators.
=-in-unary U1U U1U;
=-in-unary U11U U11U;
=-in-unary U111U U111U;
=-in-unary U1111U U1111U;
=-in-unary U11111U U11111U;
=-in-unary U111111U U111111U;
=-in-unary U1111111U U1111111U;
=-in-unary U11111111U U11111111U;
=-in-unary U1U U1U;
=-in-unary U111111U U111111U;
=-in-unary U11U U11U;
2. now introduce other relational operators
# After this lesson, it should be clear what contexts # < > and = are appropriate in. # drive the lesson home
=-in-unary U1U U1U;
>-in-unary U11U U1U;
>-in-unary U111U U1U;
>-in-unary U1111U U1U;
<-in-unary U1U U11U;
=-in-unary U11U U11U;
>-in-unary U111U U11U;
>-in-unary U1111U U11U;
<-in-unary U1U U111U;
<-in-unary U11U U111U;
=-in-unary U111U U111U;
>-in-unary U1111U U111U;
<-in-unary U1U U1111U;
<-in-unary U11U U1111U;
<-in-unary U111U U1111U;
=-in-unary U1111U U1111U;
>-in-unary U1U UU;
>-in-unary U111111111U U11U;
>-in-unary U111111U UU;
>-in-unary U11U UU;
>-in-unary U11111111U U11U;
>-in-unary U1111U U1U;
>-in-unary U11U UU;
>-in-unary U1111111111U U1U;
>-in-unary U111111U U1U;
>-in-unary U111111111U U1U;
>-in-unary U1111111U U1U;
<-in-unary UU U1U;
<-in-unary U111U U1111111111U;
<-in-unary U1111U U111111111U;
<-in-unary U11U U1111U;
<-in-unary U1U U1111111U;
<-in-unary UU U1111111111U;
<-in-unary UU U11U;
<-in-unary UU U11U;
<-in-unary U1U U111U;
<-in-unary U11U U11111U;
<-in-unary U1U U1111U;
# switch to binary labelling for commands
= U1U U1U;
> U11U U1U;
> U111U U1U;
> U1111U U1U;
< U1U U11U;
= U11U U11U;
> U111U U11U;
> U1111U U11U;
< U1U U111U;
< U11U U111U;
= U111U U111U;
> U1111U U111U;
< U1U U1111U;
< U11U U1111U;
< U111U U1111U;
= U1111U U1111U;
# a few more random examples
< U111U U1111U;
= U1111U U1111U;
< U1U U11111U;
> U1111U UU;
> U11111U U1111U;
< U11U U111U;
> U11U U1U;
> U11111U U1U;
= U111U U111U;
= U111U U111U;
> U1U UU;
3. introduce the NOT logical operator
intro not;
= UU UU;
not / < UU UU;
not / > UU UU;
= U1111U U1111U;
not / < U1111U U1111U;
not / > U1111U U1111U;
= U111111U U111111U;
not / < U111111U U111111U;
not / > U111111U U111111U;
= U11U U11U;
not / < U11U U11U;
not / > U11U U11U;
= U111U U111U;
not / < U111U U111U;
not / > U111U U111U;
not / = U111U U1111111111U;
< U111U U1111111111U;
not / > U111U U1111111111U;
not / = U11111U U1111111U;
< U11111U U1111111U;
not / > U11111U U1111111U;
not / = U1U U11U;
< U1U U11U;
not / > U1U U11U;
not / = UU U11111U;
< UU U11111U;
not / > UU U11111U;
not / = U11111111U U11111111111111U;
< U11111111U U11111111111111U;
not / > U11111111U U11111111111111U;
not / = U11111111111U U111111U;
> U11111111111U U111111U;
not / < U11111111111U U111111U;
not / = U111111111111U U11U;
> U111111111111U U11U;
not / < U111111111111U U11U;
not / = U1111111111U U1111111U;
> U1111111111U U1111111U;
not / < U1111111111U U1111111U;
not / = U1111U UU;
> U1111U UU;
not / < U1111U UU;
not / = U1111111111111111U U111111111U;
> U1111111111111111U U111111111U;
not / < U1111111111111111U U111111111U;
4. introduce addition
intro +;
= U11U / + UU U11U;
= U11111U / + U1111U U1U;
= U11U / + U11U UU;
= U1111U / + UU U1111U;
= U1111U / + U111U U1U;
= U111U / + U1U U11U;
= UU / + UU UU;
= U1111U / + U1111U UU;
= U111U / + U11U U1U;
= U1111U / + U1111U UU;
5. introduce subtraction
intro -;
= UU / - U11U U11U;
= U1111U / - U11111U U1U;
= U11U / - U11U UU;
= UU / - U1111U U1111U;
= U111U / - U1111U U1U;
= U1U / - U111U U11U;
= UU / - UU UU;
= U1111U / - U1111U UU;
= U11U / - U111U U1U;
= U1111U / - U1111U UU;
6. introduce multiplication
intro *;
= UU / * UU UU;
= UU / * UU U1U;
= UU / * UU U11U;
= UU / * UU U111U;
= UU / * U1U UU;
= U1U / * U1U U1U;
= U11U / * U1U U11U;
= U111U / * U1U U111U;
= UU / * U11U UU;
= U11U / * U11U U1U;
= U1111U / * U11U U11U;
= U111111U / * U11U U111U;
= UU / * U111U UU;
= U111U / * U111U U1U;
= U111111U / * U111U U11U;
= U111111111U / * U111U U111U;
= UU / * UU U1U;
= U111U / * U111U U1U;
= UU / * U11U UU;
= UU / * UU U111U;
= U111U / * U111U U1U;
= U11U / * U1U U11U;
= UU / * UU UU;
= UU / * U111U UU;
= UU / * U11U UU;
= UU / * U111U UU;
7. introduce a simple form of binary notation
# After this lesson, in the higher-level version of the message, # will expand decimal to stand for the binary notation given. # It wouldn't be hard to accompany this lesson with a more # formal definition once functions are introduced (below) # so maybe the transition to binary should be delayed?
= (:) U1U;
= (:.) U11U;
= (:..) U1111U;
= (:...) U11111111U;
= (:....) U1111111111111111U;
= (.) UU;
= (:) U1U;
= (:.) U11U;
= (::) U111U;
= (:..) U1111U;
= (:.:) U11111U;
= (::.) U111111U;
= (:::) U1111111U;
= (:...) U11111111U;
= (:..:) U111111111U;
= (:.:.) U1111111111U;
= (:.::) U11111111111U;
= (::..) U111111111111U;
= (::.:) U1111111111111U;
= (:::.) U11111111111111U;
= (::::) U111111111111111U;
= (.) UU;
= (:::) U1111111U;
= (::.:) U1111111111111U;
= (:.:) U11111U;
= (:..:) U111111111U;
= (.) UU;
= (::) U111U;
= (::::) U111111111111111U;
= (::..) U111111111111U;
= (:.:) U11111U;
= (:.:) U11111U;
= (:..:) U111111111U;
= (:.) U11U;
= (:) U1U;
= (::::) U111111111111111U;
= (:.) U11U;
= U11111U / + U1111U U1U;
= (:.:) / + (:..) (:);
= U1111111U / + U111111U U1U;
= (:::) / + (::.) (:);
= U11111U / + U1111U U1U;
= (:.:) / + (:..) (:);
= U1111U / + UU U1111U;
= (:..) / + (.) (:..);
= U111111111U / + U1111111U U11U;
= (:..:) / + (:::) (:.);
= U11111111111U / + U1111111U U1111U;
= (:.::) / + (:::) (:..);
= U1111111111U / + U111U U1111111U;
= (:.:.) / + (::) (:::);
= U111111U / + U11111U U1U;
= (::.) / + (:.:) (:);
= U1111U / * U1111U U1U;
= (:..) / * (:..) (:);
= U1111U / * U1U U1111U;
= (:..) / * (:) (:..);
= U1111U / * U1U U1111U;
= (:..) / * (:) (:..);
= U111111U / * U11U U111U;
= (::.) / * (:.) (::);
= U111111U / * U11U U111U;
= (::.) / * (:.) (::);
= U1111U / * U11U U11U;
= (:..) / * (:.) (:.);
= U111111111U / * U111U U111U;
= (:..:) / * (::) (::);
= U1111111111111111U / * U1111U U1111U;
= (:....) / * (:..) (:..);
8. show local assignment
assign 20 0 / = (20) 0;
assign 20 1 / = (20) 1;
assign 20 2 / = (20) 2;
assign 21 0 / = (21) 0;
assign 21 1 / = (21) 1;
assign 21 2 / = (21) 2;
assign 22 0 / = (22) 0;
assign 22 1 / = (22) 1;
assign 22 2 / = (22) 2;
= 0 (assign 20 0 (20));
= 0 (assign 20 0 / 20);
= 0 / assign 20 0 / 20;
= 20 / assign 20 0 20;
= 5 / assign 20 0 5;
= 5 / assign 20 0 / assign 23 5 / 23;
= 23 / assign 20 0 / assign 23 5 23;
= 1 (assign 20 1 (20));
= 1 (assign 20 1 / 20);
= 1 / assign 20 1 / 20;
= 20 / assign 20 1 20;
= 5 / assign 20 1 5;
= 5 / assign 20 1 / assign 23 5 / 23;
= 23 / assign 20 1 / assign 23 5 23;
= 2 (assign 20 2 (20));
= 2 (assign 20 2 / 20);
= 2 / assign 20 2 / 20;
= 20 / assign 20 2 20;
= 5 / assign 20 2 5;
= 5 / assign 20 2 / assign 23 5 / 23;
= 23 / assign 20 2 / assign 23 5 23;
= 0 (assign 21 0 (21));
= 0 (assign 21 0 / 21);
= 0 / assign 21 0 / 21;
= 21 / assign 21 0 21;
= 5 / assign 21 0 5;
= 5 / assign 21 0 / assign 23 5 / 23;
= 23 / assign 21 0 / assign 23 5 23;
= 1 (assign 21 1 (21));
= 1 (assign 21 1 / 21);
= 1 / assign 21 1 / 21;
= 21 / assign 21 1 21;
= 5 / assign 21 1 5;
= 5 / assign 21 1 / assign 23 5 / 23;
= 23 / assign 21 1 / assign 23 5 23;
= 2 (assign 21 2 (21));
= 2 (assign 21 2 / 21);
= 2 / assign 21 2 / 21;
= 21 / assign 21 2 21;
= 5 / assign 21 2 5;
= 5 / assign 21 2 / assign 23 5 / 23;
= 23 / assign 21 2 / assign 23 5 23;
= 0 (assign 22 0 (22));
= 0 (assign 22 0 / 22);
= 0 / assign 22 0 / 22;
= 22 / assign 22 0 22;
= 5 / assign 22 0 5;
= 5 / assign 22 0 / assign 23 5 / 23;
= 23 / assign 22 0 / assign 23 5 23;
= 1 (assign 22 1 (22));
= 1 (assign 22 1 / 22);
= 1 / assign 22 1 / 22;
= 22 / assign 22 1 22;
= 5 / assign 22 1 5;
= 5 / assign 22 1 / assign 23 5 / 23;
= 23 / assign 22 1 / assign 23 5 23;
= 2 (assign 22 2 (22));
= 2 (assign 22 2 / 22);
= 2 / assign 22 2 / 22;
= 22 / assign 22 2 22;
= 5 / assign 22 2 5;
= 5 / assign 22 2 / assign 23 5 / 23;
= 23 / assign 22 2 / assign 23 5 23;
# Now for functions.
assign 20 (? 28 5) / = 5 (20 2);
assign 32 (? 24 5) / = 5 (32 3);
assign 28 (? 29 6) / = 6 (28 2);
assign 30 (? 32 6) / = 6 (30 3);
assign 25 (? 38 (38)) / = 2 (25 2);
assign 23 (? 30 (30)) / = 3 (23 3);
assign 25 (? 33 (33)) / = 2 (25 2);
assign 29 (? 21 (21)) / = 3 (29 3);
assign 25 (? 32 / + (32) 1) / = 3 (25 2);
assign 31 (? 38 / + (38) 1) / = 4 (31 3);
assign 35 (? 33 / + (33) 1) / = 3 (35 2);
assign 32 (? 26 / + (26) 1) / = 4 (32 3);
assign y (? x / + (x) 6) / = (y 6) 12;
= ((? x / + (x) 6) 6) 12;
assign y (? x / + (x) 4) / = (y 0) 4;
= ((? x / + (x) 4) 0) 4;
assign y (? x / + (x) 12) / = (y 0) 12;
= ((? x / + (x) 12) 0) 12;
assign y (? x / + (x) 15) / = (y 2) 17;
= ((? x / + (x) 15) 2) 17;
assign z (? x / ? y / + 1 / * (x) (y)) / = (z 13 4) 53;
assign z (? x / ? y / + 1 / * (x) (y)) / = ((z 13) 4) 53;
= ((? x / ? y / + 1 / * (x) (y)) 13 4) 53;
= (((? x / ? y / + 1 / * (x) (y)) 13) 4) 53;
assign z (? x / ? y / + 1 / * (x) (y)) / = (z 5 6) 31;
assign z (? x / ? y / + 1 / * (x) (y)) / = ((z 5) 6) 31;
= ((? x / ? y / + 1 / * (x) (y)) 5 6) 31;
= (((? x / ? y / + 1 / * (x) (y)) 5) 6) 31;
assign z (? x / ? y / + 1 / * (x) (y)) / = (z 7 8) 57;
assign z (? x / ? y / + 1 / * (x) (y)) / = ((z 7) 8) 57;
= ((? x / ? y / + 1 / * (x) (y)) 7 8) 57;
= (((? x / ? y / + 1 / * (x) (y)) 7) 8) 57;
assign z (? x / ? y / + 1 / * (x) (y)) / = (z 8 2) 17;
assign z (? x / ? y / + 1 / * (x) (y)) / = ((z 8) 2) 17;
= ((? x / ? y / + 1 / * (x) (y)) 8 2) 17;
= (((? x / ? y / + 1 / * (x) (y)) 8) 2) 17;
assign w (? x / ? y / ? z / = (z) / + (x) (y)) / w 15 14 29;
assign w (? x / ? y / ? z / = (z) / + (x) (y)) / w 5 8 13;
assign w (? x / ? y / ? z / = (z) / + (x) (y)) / w 12 15 27;
assign w (? x / ? y / ? z / = (z) / + (x) (y)) / w 14 14 28;
assign w (? x / ? y / ? z / = (z) / + (x) (y)) / w 8 0 8;
assign w (? x / ? y / ? z / = (z) / + (x) (y)) / w 15 9 24;
assign w (? x / ? y / ? z / = (z) / + (x) (y)) / w 11 15 26;
assign w (? x / ? y / ? z / = (z) / + (x) (y)) / w 5 7 12;
9. demonstrate existence of memory
define forty-something 42;
= 42 (forty-something);
# now introduce a function
assign square (? x / * (x) (x)) / = 0 (square 0);
assign square (? x / * (x) (x)) / = 16 (square 4);
assign square (? x / * (x) (x)) / = 64 (square 8);
assign square (? x / * (x) (x)) / = 9 (square 3);
# show that functions can be remembered across statements
define square / ? x / * (x) (x);
= (square 5) 25;
= (square 0) 0;
= (square 1) 1;
= (square 9) 81;
define plusone / ? x / + (x) 1;
= (plusone 7) 8;
= (plusone 3) 4;
= (plusone 3) 4;
= (plusone 5) 6;
10. use equality for truth values
= (= U11U U11U) (> U1111U U11U);
= (= U1U U1U) (> U111111U U1111U);
= (< U111U U1111U) (= U11111U U11111U);
= (= U111U U111U) (= U1111U U1111U);
= (= U111U U111U) (= UU UU);
= (< U111111U U11U) (< U1111U U11U);
= (< U1111U U1U) (> UU UU);
= (> UU U11111U) (= U111U U11U);
= (> U11U U111U) (> U1111U U11111U);
= (> U11U U111111U) (> U1U U111111U);
not / = (> U11U U111U) (< U1U U1111U);
not / = (= U1111U U111U) (< U1U U11U);
not / = (= U11111U U1111U) (< U11U U1111U);
not / = (> U1111U U111111U) (= U111U U111U);
not / = (= U111U U1U) (> U1111U U1U);
not / = (< U111U U111111U) (< U111111U U11U);
not / = (= U11U U11U) (> U11U U11111U);
not / = (= U11111U U11111U) (< U111111U U11U);
not / = (= U111U U111U) (< U1111U U111U);
not / = (> U11111U U11U) (< U11111U U1111U);
# This could all be simplified or removed # once the handling of true/false stabilizes
define true 1;
define false 0;
= (true) (= U1U U1U);
= (true) (= UU UU);
= (true) (> U1111111U U11111U);
= (true) (= U11111U U11111U);
= (true) (= U1111U U1111U);
= (< U11111U U111111U) (true);
= (= U11111U U11111U) (true);
= (> U1111111U U11111U) (true);
= (= U11U U11U) (true);
= (< U111U U111111U) (true);
= (false) (< U11111U UU);
= (false) (= U11U U111U);
= (false) (< U111111U U11U);
= (false) (> U1U U11U);
= (false) (> U11U U11111U);
= (= U1111U U111U) (false);
= (= UU U1U) (false);
= (< U111111U U111U) (false);
= (= U111U UU) (false);
= (= U1111U U111U) (false);
= (true) (true);
= (false) (false);
not / = (true) (false);
not / = (false) (true);
11. show mechanisms for branching
intro if;
= 28 / if (< 3 0) 24 28;
= 27 / if (> 2 4) 29 27;
= 29 / if (= 3 1) 20 29;
= 21 / if (= 0 0) 21 26;
= 29 / if (> 5 3) 29 23;
= 26 / if (> 1 0) 26 22;
= 21 / if (= 3 3) 21 27;
= 23 / if (> 4 4) 25 23;
define max / ? x / ? y / if (> (x) (y)) (x) (y);
define min / ? x / ? y / if (< (x) (y)) (x) (y);
= 0 / max 0 0;
= 0 / min 0 0;
= 1 / max 0 1;
= 0 / min 0 1;
= 2 / max 0 2;
= 0 / min 0 2;
= 1 / max 1 0;
= 0 / min 1 0;
= 1 / max 1 1;
= 1 / min 1 1;
= 2 / max 1 2;
= 1 / min 1 2;
= 2 / max 2 0;
= 0 / min 2 0;
= 2 / max 2 1;
= 1 / min 2 1;
= 2 / max 2 2;
= 2 / min 2 2;
# need to be careful about whether 'if' is eager or lazy # here we suggest that it is lazy
define factorial / ? n / if (< (n) 1) 1 / * (n) / factorial / - (n) 1;
= 1 / factorial 1;
= 2 / factorial 2;
= 6 / factorial 3;
= 24 / factorial 4;
= 120 / factorial 5;
12. introduce the AND logical operator
intro and;
define and (? x / ? y / if (x) (if (y) (true) (false)) (false));
and (= U11U U11U) (> U1111U U11U);
and (= U1U U1U) (> U111111U U1111U);
and (< U111U U1111U) (= U11111U U11111U);
and (= U111U U111U) (= U1111U U1111U);
and (= U111U U111U) (= UU UU);
and (< U11111U U1111111U) (> U11111U U111U);
and (> U11111U U1111U) (> U1U UU);
and (> U111U UU) (= U111U U111U);
and (< U111U U1111U) (< U111U U111111U);
and (> U11111U U1111U) (> U11111U U1111U);
not / and (> U111111U U1111U) (< U111U U1U);
not / and (> U111U U1U) (> U111U U111U);
not / and (= UU UU) (= U11111U U1111U);
not / and (< U11U U1111U) (> U1111U U111111U);
not / and (= U111U U111U) (= U111U U1U);
not / and (> U1U U11111U) (< U111U U111111U);
not / and (< U111111U U11U) (= U11U U11U);
not / and (> U11U U11111U) (= U11111U U11111U);
not / and (< U111111U U11U) (= U111U U111U);
not / and (< U1111U U111U) (> U11111U U11U);
not / and (< U11111U U1111U) (= U1U U11U);
not / and (< U111111U U1111U) (= U11111U U1U);
not / and (> U11U U111111U) (= U1U U11111U);
not / and (< U111111U U111U) (= U11U U111U);
not / and (< U111111U U1111U) (> UU U1U);
not / and (= U111U U11111U) (< U1111U U1U);
not / and (= U1111U U1U) (< U1111U U11U);
not / and (< U111111U U111U) (= U111U UU);
not / and (< U1111U U11U) (< U1111U U111111U);
not / and (> U1111U U1U) (< U11111U U11U);
not / and (> UU U1U) (> U1111111U U11111U);
not / and (< U111U U1111U) (> U111U U111111U);
not / and (> U1U U11U) (> U111111U U1111U);
not / and (< UU U1U) (= U1111U U11111U);
and (< U1111U U111111U) (< U11111U U1111111U);
13. introduce the OR logical operator
define or (? x / ? y / if (x) (true) (if (y) (true) (false)));
intro or;
or (= U11U U11U) (> U1111U U11U);
or (= U1U U1U) (> U111111U U1111U);
or (< U111U U1111U) (= U11111U U11111U);
or (= U111U U111U) (= U1111U U1111U);
or (= U111U U111U) (= UU UU);
or (< U11111U U1111111U) (> U11111U U111U);
or (> U11111U U1111U) (> U1U UU);
or (> U111U UU) (= U111U U111U);
or (< U111U U1111U) (< U111U U111111U);
or (> U11111U U1111U) (> U11111U U1111U);
or (> U111111U U1111U) (< U111U U1U);
or (> U111U U1U) (> U111U U111U);
or (= UU UU) (= U11111U U1111U);
or (< U11U U1111U) (> U1111U U111111U);
or (= U111U U111U) (= U111U U1U);
or (> U1U U11111U) (< U111U U111111U);
or (< U111111U U11U) (= U11U U11U);
or (> U11U U11111U) (= U11111U U11111U);
or (< U111111U U11U) (= U111U U111U);
or (< U1111U U111U) (> U11111U U11U);
not / or (< U11111U U1111U) (= U1U U11U);
not / or (< U111111U U1111U) (= U11111U U1U);
not / or (> U11U U111111U) (= U1U U11111U);
not / or (< U111111U U111U) (= U11U U111U);
not / or (< U111111U U1111U) (> UU U1U);
not / or (= U111U U11111U) (< U1111U U1U);
not / or (= U1111U U1U) (< U1111U U11U);
not / or (< U111111U U111U) (= U111U UU);
or (< U1111U U11U) (< U1111U U111111U);
or (> U1111U U1U) (< U11111U U11U);
or (> UU U1U) (> U1111111U U11111U);
or (< U111U U1111U) (> U111U U111111U);
or (> U1U U11U) (> U111111U U1111U);
or (< UU U1U) (= U1111U U11111U);
or (< U1111U U111111U) (< U11111U U1111111U);
define >= (? x / ? y / or (> (x) (y)) (= (x) (y)));
define <= (? x / ? y / or (< (x) (y)) (= (x) (y)));
>= 0 0;
<= 0 0;
not / >= 0 1;
<= 0 1;
not / >= 0 2;
<= 0 2;
>= 1 0;
not / <= 1 0;
>= 1 1;
<= 1 1;
not / >= 1 2;
<= 1 2;
>= 2 0;
not / <= 2 0;
>= 2 1;
not / <= 2 1;
>= 2 2;
<= 2 2;
14. illustrate pairs
define cons (? x / ? y / ? f / f (x) (y));
define car (? pair / pair (? x / ? y / x));
define cdr (? pair / pair (? x / ? y / y));
assign x (cons 0 4) / = (car / x) 0;
assign x (cons 0 4) / = (cdr / x) 4;
assign x (cons 6 2) / = (car / x) 6;
assign x (cons 6 2) / = (cdr / x) 2;
assign x (cons 3 9) / = (car / x) 3;
assign x (cons 3 9) / = (cdr / x) 9;
assign x (cons 7 / cons 10 2) / = (car / x) 7;
assign x (cons 7 / cons 10 2) / = (car / cdr / x) 10;
assign x (cons 7 / cons 10 2) / = (cdr / cdr / x) 2;
assign x (cons 1 / cons 15 17) / = (car / x) 1;
assign x (cons 1 / cons 15 17) / = (car / cdr / x) 15;
assign x (cons 1 / cons 15 17) / = (cdr / cdr / x) 17;
assign x (cons 8 / cons 14 9) / = (car / x) 8;
assign x (cons 8 / cons 14 9) / = (car / cdr / x) 14;
assign x (cons 8 / cons 14 9) / = (cdr / cdr / x) 9;
assign x (cons 3 / cons 0 / cons 2 / cons 4 1) / and (= 3 / car / x) / and (= 0 / car / cdr / x) / and (= 2 / car / cdr / cdr / x) / and (= 4 / car / cdr / cdr / cdr / x) (= 1 / cdr / cdr / cdr / cdr / x);
15. introduce mutable objects, and side-effects
intro make-cell;
intro set!;
intro get!;
define demo-mut1 / make-cell 0;
set! (demo-mut1) 15;
= (get! / demo-mut1) 15;
set! (demo-mut1) 5;
set! (demo-mut1) 7;
= (get! / demo-mut1) 7;
define demo-mut2 / make-cell 11;
= (get! / demo-mut2) 11;
set! (demo-mut2) 22;
= (get! / demo-mut2) 22;
= (get! / demo-mut1) 7;
= (+ (get! / demo-mut1) (get! / demo-mut2)) 29;
if (= (get! / demo-mut1) 7) (set! (demo-mut1) 88) (set! (demo-mut1) 99);
= (get! / demo-mut1) 88;
if (= (get! / demo-mut1) 7) (set! (demo-mut1) 88) (set! (demo-mut1) 99);
= (get! / demo-mut1) 99;
16. illustrate lists and some list operators
# to make list describable as a function, need to preceed lists # ... with an argument count # Lists keep an explicit record of their length # this is to avoid the need for using a special 'nil' symbol # ... which cannot itself be placed in the list. # pending: should introduce number? check function
define list-helper / ? n / ? ret / if (> (n) 1) (? x / list-helper (- (n) 1) (? y / ? z / ret (+ 1 (y)) (cons (x) (z)))) (? x / ret 1 (x));
define list / ? n / if (= (n) 0) (cons 0 0) (list-helper (n) (? y / ? z / cons (y) (z)));
define head / ? lst / if (= (car / lst) 0) (undefined) (if (= (car / lst) 1) (cdr / lst) (car / cdr / lst));
define tail / ? lst / if (= (car / lst) 0) (undefined) (if (= (car / lst) 1) (cons 0 0) (cons (- (car / lst) 1) (cdr / cdr / lst)));
define list-length / ? lst / car / lst;
define list-ref / ? lst / ? n / if (= (list-ref / lst) 0) (undefined) (if (= (n) 0) (head / lst) (list-ref (tail / lst) (- (n) 1)));
define prepend / ? x / ? lst / if (= (list-length / lst) 0) (cons 1 (x)) (cons (+ (list-length / lst) 1) (cons (x) (cdr / lst)));
define equal / ? x / ? y / if (= (number? (x)) (number? (y))) (if (number? (x)) (= (x) (y)) (list= (x) (y))) (false);
define list= / ? x / ? y / if (= (list-length / x) (list-length / y)) (if (> (list-length / x) 0) (and (equal (head / x) (head / y)) (list= (tail / x) (tail / y))) (true)) (false);
= (list-length / (list 0)) 0;
= (list-length / (list 4) 6 1 0 4) 4;
= (list-length / (list 6) 6 2 7 0 9 4) 6;
= (list-length / (list 2) 4 9) 2;
= (list-length / (list 3) 6 1 7) 3;
= (head / (list 6) 12 11 10 4 1 5) 12;
list= (tail / (list 6) 12 11 10 4 1 5) ((list 5) 11 10 4 1 5);
= (head / (list 8) 15 13 12 7 10 11 13 18) 15;
list= (tail / (list 8) 15 13 12 7 10 11 13 18) ((list 7) 13 12 7 10 11 13 18);
= (head / (list 2) 11 1) 11;
list= (tail / (list 2) 11 1) ((list 1) 1);
= (head / (list 6) 5 19 4 16 6 11) 5;
list= (tail / (list 6) 5 19 4 16 6 11) ((list 5) 19 4 16 6 11);
= (head / (list 10) 12 18 7 4 9 18 6 16 6 18) 12;
list= (tail / (list 10) 12 18 7 4 9 18 6 16 6 18) ((list 9) 18 7 4 9 18 6 16 6 18);
= (head / (list 6) 19 7 3 10 19 13) 19;
list= (tail / (list 6) 19 7 3 10 19 13) ((list 5) 7 3 10 19 13);
= (head / (list 6) 19 7 19 12 16 13) 19;
list= (tail / (list 6) 19 7 19 12 16 13) ((list 5) 7 19 12 16 13);
= (head / (list 1) 3) 3;
list= (tail / (list 1) 3) ((list 0));
= (head / (list 3) 2 19 17) 2;
list= (tail / (list 3) 2 19 17) ((list 2) 19 17);
= (head / (list 7) 1 16 5 14 6 19 2) 1;
list= (tail / (list 7) 1 16 5 14 6 19 2) ((list 6) 16 5 14 6 19 2);
= (list-ref ((list 3) 18 14 17) 1) 14;
= (list-ref ((list 3) 8 11 10) 2) 10;
= (list-ref ((list 8) 15 0 4 9 9 2 10 17) 3) 9;
= (list-ref ((list 7) 4 8 8 5 14 5 13) 4) 14;
= (list-ref ((list 4) 1 4 7 18) 2) 7;
= (list-ref ((list 3) 12 2 3) 1) 2;
= (list-ref ((list 6) 12 5 7 15 7 16) 2) 7;
= (list-ref ((list 8) 5 15 7 14 7 1 11 19) 0) 5;
= (list-ref ((list 3) 19 17 8) 2) 8;
= (list-ref ((list 4) 10 10 4 11) 1) 10;
list= ((list 0)) ((list 0));
list= ((list 1) 4) ((list 1) 4);
list= ((list 2) 7 5) ((list 2) 7 5);
list= ((list 3) 15 13 11) ((list 3) 15 13 11);
list= ((list 4) 2 8 0 6) ((list 4) 2 8 0 6);
# this next batch of examples are a bit misleading, should streamline
not / list= ((list 0)) ((list 1) 9);
not / list= ((list 0)) ((list 1) 5);
not / list= ((list 1) 18) ((list 2) 8 18);
not / list= ((list 1) 18) ((list 2) 18 5);
not / list= ((list 2) 11 18) ((list 3) 7 11 18);
not / list= ((list 2) 11 18) ((list 3) 11 18 6);
not / list= ((list 3) 7 19 17) ((list 4) 6 7 19 17);
not / list= ((list 3) 7 19 17) ((list 4) 7 19 17 0);
not / list= ((list 4) 10 0 11 1) ((list 5) 0 10 0 11 1);
not / list= ((list 4) 10 0 11 1) ((list 5) 10 0 11 1 8);
# some helpful functions
list= (prepend 8 ((list 0))) ((list 1) 8);
list= (prepend 11 ((list 1) 8)) ((list 2) 11 8);
list= (prepend 13 ((list 2) 1 12)) ((list 3) 13 1 12);
list= (prepend 0 ((list 3) 7 7 5)) ((list 4) 0 7 7 5);
list= (prepend 16 ((list 4) 16 0 19 3)) ((list 5) 16 16 0 19 3);
list= (prepend 10 ((list 5) 5 6 7 9 10)) ((list 6) 10 5 6 7 9 10);
list= (prepend 19 ((list 6) 3 19 18 6 10 16)) ((list 7) 19 3 19 18 6 10 16);
list= (prepend 19 ((list 7) 17 17 10 1 18 12 14)) ((list 8) 19 17 17 10 1 18 12 14);
define pair / ? x / ? y / (list 2) (x) (y);
define first / ? lst / head / lst;
define second / ? lst / head / tail / lst;
list= (pair 3 6) ((list 2) 3 6);
= (first / pair 3 6) 3;
= (second / pair 3 6) 6;
list= (pair 4 9) ((list 2) 4 9);
= (first / pair 4 9) 4;
= (second / pair 4 9) 9;
list= (pair 8 3) ((list 2) 8 3);
= (first / pair 8 3) 8;
= (second / pair 8 3) 3;
define list-find-helper / ? lst / ? key / ? fail / ? idx / if (= (list-length / lst) 0) (fail 0) (if (equal (head / lst) (key)) (idx) (list-find-helper (tail / lst) (key) (fail) (+ (idx) 1)));
define list-find / ? lst / ? key / ? fail / list-find-helper (lst) (key) (fail) 0;
define example-fail / ? x 100;
= (list-find ((list 1) 13) 13 (example-fail)) 0;
= (list-find ((list 10) 0 9 8 16 15 14 17 5 9 2) 15 (example-fail)) 4;
= (list-find ((list 3) 7 4 10) 7 (example-fail)) 0;
= (list-find ((list 6) 0 17 10 13 11 5) 17 (example-fail)) 1;
= (list-find ((list 3) 12 9 6) 12 (example-fail)) 0;
= (list-find ((list 7) 17 1 4 17 14 13 13) 14 (example-fail)) 4;
= (list-find ((list 3) 2 15 2) 15 (example-fail)) 1;
= (list-find ((list 9) 6 13 10 8 10 9 6 15 18) 13 (example-fail)) 1;
= (list-find ((list 3) 12 16 0) 12 (example-fail)) 0;
= (list-find ((list 1) 15) 15 (example-fail)) 0;
= (list-find ((list 4) 2 17 11 5) 14 (example-fail)) 100;
= (list-find ((list 6) 12 1 19 6 17 9) 2 (example-fail)) 100;
= (list-find ((list 8) 11 6 17 8 13 10 9 16) 19 (example-fail)) 100;
17. describe changes to the implicit interpreter to allow new special forms
define base-translate / translate;
define translate / ? x / if (= (x) 32) 64 (base-translate / x);
= 32 64;
= (+ 32 64) 128;
define translate / base-translate;
not / = 32 64;
= (+ 32 64) 96;
# now can create a special form for lists
define translate / ? x / if (number? / x) (base-translate / x) (if (= (head / x) vector) (translate / prepend ((list 2) list (list-length / tail / x)) (tail / x)) (base-translate / x));
list= (vector 1 2 3) ((list 3) 1 2 3);
# now to desugar let expressions
define translate-with-vector / translate;
define translate-let-form / ? x / ? body / if (= (list-length / x) 0) (translate / body) (translate-let-form (tail / x) (vector (vector ? (head / head / x) (body)) (head / tail / head / x)));
define translate / ? x / if (number? / x) (translate-with-vector / x) (if (= (head / x) let) (translate-let-form (head / tail / x) (head / tail / tail / x)) (translate-with-vector / x));
let ((x 20)) (= (x) 20);
let ((x 50) (y 20)) (= (- (x) (y)) 30);
# the is-list function is now on dubious ground # this stuff will be replaced with typing ASAP
define is-list / ? x / not / number? / x;
is-list / (list 2) 1 3;
is-list / (list 0);
not / is-list 23;
is-list / (list 3) ((list 2) 2 3) 1 (? x / + (x) 10);
18. introduce sugar for let
# if would be good to introduce desugarings more rigorously, but for now... # ... just a very vague sketch
intro let;
= (let ((x 10)) (+ (x) 5)) ((? x / + (x) 5) 10);
= (let ((x 10) (y 5)) (+ (x) (y))) (((? x / ? y / + (x) (y)) 10) 5);
19. build up functions of several variables
= ((? x / ? y / - (x) (y)) 4 0) 4;
= ((? x / ? y / - (x) (y)) 11 8) 3;
= ((? x / ? y / - (x) (y)) 5 5) 0;
= ((? x / ? y / - (x) (y)) 10 1) 9;
= ((? x / ? y / - (x) (y)) 10 7) 3;
define last / ? x / list-ref (x) (- (list-length / x) 1);
define except-last / ? x / if (> (list-length / x) 1) (prepend (head / x) (except-last / tail / x)) (vector);
# test last and except-last
= 15 (last / vector 4 5 15);
list= (vector 4 5) (except-last / vector 4 5 15);
intro lambda;
define prev-translate / translate;
define translate / let ((prev (prev-translate))) (? x / if (number? / x) (prev / x) (if (= (head / x) lambda) (let ((formals (head / tail / x)) (body (head / tail / tail / x))) (if (> (list-length / formals) 0) (translate (vector lambda (except-last / formals) (vector ? (last / formals) (body)))) (translate (body)))) (prev / x)));
# test lambda
= ((lambda (x y) (- (x) (y))) 8 3) 5;
= ((lambda (x y) (- (x) (y))) 1 1) 0;
= ((lambda (x y) (- (x) (y))) 10 9) 1;
= ((lambda (x y) (- (x) (y))) 7 5) 2;
= ((lambda (x y) (- (x) (y))) 9 8) 1;
define apply / lambda (x y) (if (list= (y) (vector)) (x) (apply ((x) (head / y)) (tail / y)));
= (apply (lambda (x y) (- (x) (y))) (vector 8 6)) 2;
= (apply (lambda (x y) (- (x) (y))) (vector 5 0)) 5;
= (apply (lambda (x y) (- (x) (y))) (vector 12 9)) 3;
= (apply (lambda (x y) (- (x) (y))) (vector 13 8)) 5;
= (apply (lambda (x y) (- (x) (y))) (vector 11 3)) 8;
20. show map function for applying a function across the elements of a list
define map / lambda (p lst) (if (> (list-length / lst) 0) (prepend (p (head / lst)) (map (p) (tail / lst))) (vector));
list= (map (? x / * (x) 2) (vector 0 8 15)) (vector 0 16 30);
list= (map (? x / * (x) 2) (vector 12 4 0 9)) (vector 24 8 0 18);
list= (map (? x / * (x) 2) (vector 8 9 5 7 10)) (vector 16 18 10 14 20);
list= (map (? x / * (x) 2) (vector 10 12 19 8 3 1)) (vector 20 24 38 16 6 2);
list= (map (? x 42) (vector 5 18 4)) (vector 42 42 42);
list= (map (? x 42) (vector 3 10 17 11)) (vector 42 42 42 42);
list= (map (? x 42) (vector 5 13 6 16 2)) (vector 42 42 42 42 42);
list= (map (? x 42) (vector 9 1 19 14 6 10)) (vector 42 42 42 42 42 42);
define crunch / lambda (p lst) (if (>= (list-length / lst) 2) (p (head / lst) (crunch (p) (tail / lst))) (if (= (list-length / lst) 1) (head / lst) (undefined)));
= (crunch (+) (vector 5 12 2)) 19;
= (crunch (+) (vector 11 18 1 4)) 34;
= (crunch (+) (vector 15 13 10 12 2)) 52;
= (crunch (+) (vector 12 6 17 15 4 10)) 64;
21. end of part 1, start of part 2
# The following parts of the message are experimental, and not # carefully integrated with the main body
intro part2;
22. show an example of recursive evaluation
# skipping over a lot of definitions and desugarings
define easy-factorial / ? f / ? x / if (> (x) 0) (* (x) / f (f) (- (x) 1)) 1;
define factorial / ? x / if (> (x) 0) (* (x) / factorial / - (x) 1) 1;
= (easy-factorial (easy-factorial) 0) 1;
= (easy-factorial (easy-factorial) 1) 1;
= (easy-factorial (easy-factorial) 2) 2;
= (easy-factorial (easy-factorial) 3) 6;
= (easy-factorial (easy-factorial) 4) 24;
= (easy-factorial (easy-factorial) 5) 120;
= (factorial 0) 1;
= (factorial 1) 1;
= (factorial 2) 2;
= (factorial 3) 6;
= (factorial 4) 24;
= (factorial 5) 120;
23. some pure lambda calculus definitions - optional
# these definitions are not quite what we want # since thinking of everything as a function requires headscratching # it would be better to use these as a parallel means of evaluation # ... for expressions
define pure-if / ? x / ? y / ? z / x (y) (z);
define pure-true / ? y / ? z / y;
define pure-false / ? y / ? z / z;
define pure-cons / ? x / ? y / ? z / pure-if (z) (x) (y);
define pure-car / ? x / x (pure-true);
define pure-cdr / ? x / x (pure-false);
define zero / ? f / ? x / x;
define one / ? f / ? x / f (x);
define two / ? f / ? x / f (f (x));
define succ / ? n / ? f / ? x / f ((n (f)) (x));
define add / ? a / ? b / (a (succ)) (b);
define mult / ? a / ? b / (a (add / b)) (zero);
define pred / ? n / pure-cdr / (n (? p / pure-cons (succ / pure-car / p) (pure-car / p))) (pure-cons (zero) (zero));
define is-zero / ? n / (n (? dummy / pure-false) (pure-true));
define fixed-point / ? f / (? x / f (x (x))) (? x / f (x (x)));
# .. but for rest of message will assume that define does fixed-point for us # now build a link between numbers and church number functions
define unchurch / ? c / c (? x / + (x) 1) 0;
= 0 (unchurch / zero);
= 1 (unchurch / one);
= 2 (unchurch / two);
define church / ? x / if (= 0 (x)) (zero) (succ / church / - (x) 1);
24. introduce universal quantifier
# really need to link with sets for true correctness # and the examples here are REALLY sparse, need much more
intro forall;
< 5 (+ 5 1);
< 4 (+ 4 1);
< 3 (+ 3 1);
< 2 (+ 2 1);
< 1 (+ 1 1);
< 0 (+ 0 1);
forall (? x / < (x) (+ (x) 1));
< 5 (* 5 2);
< 4 (* 4 2);
< 3 (* 3 2);
< 2 (* 2 2);
< 1 (* 1 2);
not / < 0 (* 0 2);
not / forall (? x / < (x) (* (x) 2));
25. introduce existential quantifier
# really need to link with sets for true correctness # and the examples here are REALLY sparse, need much more
not / = 5 (* 2 2);
= 4 (* 2 2);
not / = 3 (* 2 2);
not / = 2 (* 2 2);
not / = 1 (* 2 2);
not / = 0 (* 2 2);
intro exists;
exists (? x / = (x) (* 2 2));
not / = 5 (+ 5 2);
not / = 4 (+ 4 2);
not / = 3 (+ 3 2);
not / = 2 (+ 2 2);
not / = 1 (+ 1 2);
not / = 0 (+ 0 2);
not (exists (? x / = (x) (+ (x) 2)));
26. introduce logical implication
intro =>;
define => / ? x / ? y / not / and (x) (not / y);
=> (true) (true);
not / => (true) (false);
=> (false) (true);
=> (false) (false);
forall (? x / forall (? y / => (=> (x) (y)) (=> (not / y) (not / x))));
27. introduce sets and set membership
intro element;
define element / ? x / ? lst / not / = (list-find-helper (lst) (x) (? y 0) 1) 0;
element 0 (vector 0 4 8 3 5);
element 5 (vector 0 4 8 3 5);
element 3 (vector 0 4 8 3 5);
element 3 (vector 3 5 1 0 9);
element 1 (vector 3 5 1 0 9);
element 5 (vector 3 5 1 0 9);
element 5 (vector 8 1 6 2 0 5);
element 6 (vector 8 1 6 2 0 5);
element 5 (vector 8 1 6 2 0 5);
element 5 (vector 5 3 8 6 2 9);
element 5 (vector 5 3 8 6 2 9);
element 9 (vector 5 3 8 6 2 9);
element 7 (vector 1 7 2 6 4 5);
element 2 (vector 1 7 2 6 4 5);
element 6 (vector 1 7 2 6 4 5);
not / element 7 (vector 8 3 9 6);
not / element 1 (vector 8 6 3 5 4);
not / element 2 (vector 9 5 6);
not / element 5 (vector 2 0 7);
not / element 6 (vector 3 5);
# rules for set equality
define set-subset / ? x / ? y / if (> (list-length / x) 0) (and (element (head / x) (y)) (set-subset (tail / x) (y))) (true);
define set= / ? x / ? y / and (set-subset (x) (y)) (set-subset (y) (x));
set= (vector 1 5 9) (vector 5 1 9);
set= (vector 1 5 9) (vector 9 1 5);
not / set= (vector 1 5 9) (vector 1 5);
# let's go leave ourselves wide open to Russell's paradox # ... by using characteristic functions # ... since it doesn't really matter for communication purposes # ... and so far this is just used/tested with sets of integers really
element 5 (all (? x / = (+ (x) 10) 15));
element 3 (all (? x / = (* (x) 3) (+ (x) 6)));
define empty-set / vector;
element 0 (natural-set);
forall (? x / => (element (x) (natural-set)) (element (+ (x) 1) (natural-set)));
element 1 (natural-set);
element 2 (natural-set);
element 3 (natural-set);
element 4 (natural-set);
element 5 (natural-set);
element 6 (natural-set);
element 7 (natural-set);
element 8 (natural-set);
element 9 (natural-set);
define boolean-set / vector (true) (false);
element (true) (boolean-set);
element (false) (boolean-set);
# actually, to simplify semantics elsewhere, true and false # are now just 0 and 1 so they are not distinct from ints
define even-natural-set / all / ? x / exists / ? y / and (element (y) (natural-set)) (= (* 2 (y)) (x));
element 0 (natural-set);
element 0 (even-natural-set);
element 1 (natural-set);
not / element 1 (even-natural-set);
element 2 (natural-set);
element 2 (even-natural-set);
element 3 (natural-set);
not / element 3 (even-natural-set);
element 4 (natural-set);
element 4 (even-natural-set);
element 5 (natural-set);
not / element 5 (even-natural-set);
element 6 (natural-set);
element 6 (even-natural-set);
28. introduce graph structures
define make-graph / lambda (nodes links) (pair (nodes) (links));
define test-graph / make-graph (vector 1 2 3 4) (vector (vector 1 2) (vector 2 3) (vector 1 4));
define graph-linked / lambda (g n1 n2) (exists / ? idx / if (and (>= (idx) 0) (< (idx) (list-length / list-ref (g) 1))) (list= (list-ref (list-ref (g) 1) (idx)) (vector (n1) (n2))) (false));
= (graph-linked (test-graph) 1 2) (true);
= (graph-linked (test-graph) 1 3) (false);
= (graph-linked (test-graph) 2 4) (false);
# 'if' is used a lot in the next definition in place of and/or # this is because I haven't established lazy evaluation forms for and/or # so this very inefficient algorithm completely bogs down when combined # ... during testing with a dumb implementation for 'exists'.
define graph-linked* / lambda (g n1 n2) (if (= (n1) (n2)) (true) (if (graph-linked (g) (n1) (n2)) (true) (exists (? n3 / if (graph-linked (g) (n1) (n3)) (graph-linked* (g) (n3) (n2)) (false)))));
= (graph-linked* (test-graph) 1 2) (true);
= (graph-linked* (test-graph) 1 3) (true);
= (graph-linked* (test-graph) 2 4) (false);
29. show how to execute a sequence of instructions
intro begin;
define prev-translate / translate;
define reverse / ? x / if (>= (list-length / x) 1) (prepend (last / x) (reverse / except-last / x)) (x);
# test reverse
list= (vector 1 2 3) (reverse / vector 3 2 1);
define translate / let ((prev (prev-translate))) (? x / if (number? / x) (prev / x) (if (= (head / x) begin) (translate (vector (vector ? x (vector last (vector x))) (prepend vector (tail / x)))) (prev / x)));
= (begin 1 7 2 4) 4;
= (begin (set! (demo-mut1) 88) (set! (demo-mut1) 6) (get! / demo-mut1)) 6;
= (begin (set! (demo-mut2) 88) (set! (demo-mut1) 6) (get! / demo-mut2)) 88;
= (begin (set! (demo-mut1) 88) (set! (demo-mut1) 6) (get! / demo-mut1) 4) 4;
30. introduce environment/hashmap structure
# this section needs a LOT more examples :-) # note that at the time of writing (h 1 2) is same as ((h) 1 2)
define hash-add / lambda (h x y z) (if (equal (z) (x)) (y) (h (z)));
define hash-ref / lambda (h x) (h (x));
define hash-null / ? x / undefined;
define hash-default / ? default / ? x / default;
define test-hash / hash-add (hash-add (hash-null) 3 2) 4 9;
= (hash-ref (test-hash) 4) 9;
= (hash-ref (test-hash) 3) 2;
= (hash-ref (test-hash) 8) (undefined);
= (hash-ref (test-hash) 15) (undefined);
= (hash-ref (hash-add (test-hash) 15 33) 15) 33;
= (hash-ref (test-hash) 15) (undefined);
define make-hash / ? x / if (list= (x) (vector)) (hash-null) (hash-add (make-hash (tail / x)) (first / head / x) (second / head / x));
= (hash-ref (make-hash / vector (pair 3 10) (pair 2 20) (pair 1 30)) 3) 10;
= (hash-ref (make-hash / vector (pair 3 10) (pair 2 20) (pair 1 30)) 1) 30;
31. introduce simple mutable structures
define mutable-struct / ? lst / let ((data (map (? x / make-cell 0) (lst)))) (? key / list-ref (data) (list-find (lst) (key) (? x 0)));
define test-struct1 / mutable-struct / vector item1 item2 item3;
set! (test-struct1 item1) 15;
= (get! / test-struct1 item1) 15;
32. introduce method handler wrappers
define add-method / lambda (object name method) (hash-add (object) (name) (? dummy / method / object));
define call / ? x / x 0;
define test-struct2 / mutable-struct / vector x y;
set! (test-struct2 x) 10;
set! (test-struct2 y) 20;
= (get! / test-struct2 x) 10;
= (get! / test-struct2 y) 20;
define test-struct3 / add-method (test-struct2) sum (? self / + (get! / self x) (get! / self y));
= (get! / test-struct3 x) 10;
= (get! / test-struct3 y) 20;
= (call / test-struct3 sum) 30;
set! (test-struct3 y) 10;
= (call / test-struct3 sum) 20;
set! (test-struct2 y) 5;
= (call / test-struct3 sum) 15;
33. introduce turing machine model
# just for fun!
define safe-tail / ? x / if (> (list-length / x) 0) (if (> (list-length / x) 1) (tail / x) (vector / vector)) (vector / vector);
define safe-head / ? x / if (> (list-length / x) 0) (head / x) (vector);
define tape-read / ? tape / let ((x (second / tape))) (if (> (list-length / x) 0) (head / x) (vector));
define tape-transition / lambda (tape shift value) (if (= (shift) 1) (pair (prepend (value) (first / tape)) (safe-tail / second / tape)) (if (= (shift) 0) (pair (safe-tail / first / tape) (prepend (safe-head / first / tape) (prepend (value) (safe-tail / second / tape)))) (pair (first / tape) (prepend (value) (safe-tail / second / tape)))));
define turing / lambda (machine current last tape) (if (= (current) (last)) (tape) (let ((next (machine (current) (tape-read / tape)))) (turing (machine) (list-ref (next) 0) (last) (tape-transition (tape) (list-ref (next) 1) (list-ref (next) 2)))));
define make-tape / ? x / pair (vector) (x);
define remove-trail / ? x / ? lst / if (> (list-length / lst) 0) (if (equal (last / lst) (x)) (remove-trail (x) (except-last / lst)) (lst)) (lst);
define extract-tape / ? x / remove-trail (vector) (second / x);
define tm-binary-increment / make-hash / vector (pair right (make-hash / vector (pair 0 (vector right 1 0)) (pair 1 (vector right 1 1)) (pair (vector) (vector inc 0 (vector))))) (pair inc (make-hash / vector (pair 0 (vector noinc 0 1)) (pair 1 (vector inc 0 0)) (pair (vector) (vector halt 2 1)))) (pair noinc (make-hash / vector (pair 0 (vector noinc 0 0)) (pair 1 (vector noinc 0 1)) (pair (vector) (vector halt 1 (vector))))) (pair halt (make-hash / vector));
list= (extract-tape / turing (tm-binary-increment) right halt (make-tape / vector 1 0 0 1)) (vector 1 0 1 0);
list= (extract-tape / turing (tm-binary-increment) right halt (make-tape / vector 1 1 1)) (vector 1 0 0 0);
list= (extract-tape / turing (tm-binary-increment) right halt (make-tape / vector 1 1 1 0 0 0 1 1 1)) (vector 1 1 1 0 0 1 0 0 0);
34. introduce simple form of typing, for ease of documentation.
# An object is simply a function that takes an argument. # The argument is the method to call on the object. # Types are here taken to be just the existence of a particular method, # with that method returning an object of the appropriate type.
define make-integer
(lambda (v)
(lambda (x)
(if (= (x) int)
(v)
0)));
define objectify
(? x
(if (number? (x))
(make-integer (x))
(x)));
define instanceof
(lambda (T t)
(if (number? (t))
(= (T) int)
(not (number? ((objectify (t)) (T))))));
# add version of lambda that allows types to be declared
define prev-translate (translate);
define translate
(let ((prev (prev-translate)))
(? x
(if (number? (x))
(prev (x))
(if (= (head (x)) lambda)
(let ((formals (head (tail (x))))
(body (head (tail (tail (x))))))
(if (> (list-length (formals)) 0)
(if (number? (last (formals)))
(translate
(vector
lambda
(except-last (formals))
(vector ? (last (formals)) (body))))
(let ((formal-name (first (last (formals))))
(formal-type (second (last (formals)))))
(translate
(vector
lambda
(except-last (formals))
(vector
?
(formal-name)
(vector
let
(vector (vector
(formal-name)
(vector
(vector objectify (vector (formal-name)))
(formal-type))))
(body)))))))
(translate (body))))
(prev (x))))));
# add conditional form
define prev-translate (translate);
define translate
(let ((prev (prev-translate)))
(? x
(if (number? (x))
(prev (x))
(if (= (head (x)) cond)
(let ((cnd (head (tail (x))))
(rem (tail (tail (x)))))
(if (> (list-length (rem)) 0)
(translate
(vector
if
(first (cnd))
(second (cnd))
(prepend cond (rem))))
(translate (cnd))))
(prev (x))))));
= 99 (cond 99);
= 8 (cond ((true) 8) 11);
= 11 (cond ((false) 8) 11);
= 7 (cond ((false) 3) ((true) 7) 11);
= 3 (cond ((true) 3) ((true) 7) 11);
= 11 (cond ((false) 3) ((false) 7) 11);
define remove-match
(lambda (test lst)
(if (> (list-length (lst)) 0)
(if (test (head (lst)))
(remove-match (test) (tail (lst)))
(prepend (head (lst)) (remove-match (test) (tail (lst)))))
(lst)));
define remove-element
(lambda (x)
(remove-match (lambda (y) (= (y) (x)))));
list= (vector 1 2 3 5) (remove-element 4 (vector 1 2 3 4 5));
list= (vector 1 2 3 5) (remove-element 4 (vector 1 4 2 4 3 4 5));
define return
(lambda (T t)
(let ((obj (objectify (t))))
(obj (T))));
define tester
(lambda ((x int) (y int))
(return int (+ (x) (y))));
= 42 (tester (make-integer 10) (make-integer 32));
= 42 (tester 10 32);
define reflective
(lambda (f)
((lambda (x)
(f (lambda (y) ((x (x)) (y)))))
(lambda (x)
(f (lambda (y) ((x (x)) (y)))))));
35. an example object -- a 2D point
define point
(lambda (x y)
(reflective
(lambda (self msg)
(cond ((= (msg) x) (x))
((= (msg) y) (y))
((= (msg) point) (self))
((= (msg) +)
(lambda ((p point))
(point (+ (x) (p x))
(+ (y) (p y)))))
((= (msg) =)
(lambda ((p point))
(and (= (x) (p x))
(= (y) (p y)))))
0))));
define point1 (point 1 11);
define point2 (point 2 22);
= 1 (point1 x);
= 22 (point2 y);
= 11 ((point 11 12) x);
= 11 (((point 11 12) point) x);
= 16 (((point 16 17) point) x);
= 33 (point1 + (point2) y);
point1 + (point2) = (point 3 33);
point2 + (point1) = (point 3 33);
(point 100 200) + (point 200 100) = (point 300 300);
instanceof point (point1);
not (instanceof int (point1));
instanceof int 5;
not (instanceof point 5);
36. an example object -- a container
define container
(lambda (x)
(let ((contents (make-cell (vector))))
(reflective
(lambda (self msg)
(cond ((= (msg) container) (self))
((= (msg) inventory) (get! (contents)))
((= (msg) add)
(lambda (x)
(if (not (element (x) (get! (contents))))
(set! (contents) (prepend (x) (get! (contents))))
(false))))
((= (msg) remove)
(lambda (x)
(set! (contents) (remove-element (x) (get! (contents))))))
((= (msg) =)
(lambda ((c container))
(set= (self inventory) (c inventory))))
0)))));
# Can pass anything to container function to create an object # Should eventually use a consistent protocol for all objects, # but all this stuff is still in flux
define pocket (container new);
pocket add 77;
pocket add 88;
pocket add 99;
set= (pocket inventory) (vector 77 88 99);
pocket remove 88;
set= (pocket inventory) (vector 77 99);
define pocket2 (container new);
pocket2 add 77;
pocket2 add 99;
pocket2 = (pocket);
37. expressing inheritance
# counter-container adds one method to container: count
define counter-container
(lambda (x)
(let ((super (container new)))
(reflective
(lambda (self msg)
(cond ((= (msg) counter-container) (self))
((= (msg) count) (list-length (super inventory)))
(super (msg)))))));
define cc1 (counter-container new);
= 0 (cc1 count);
cc1 add 4;
= 1 (cc1 count);
cc1 add 5;
= 2 (cc1 count);
38. adding a special form for classes
# need a bunch of extra machinery first, will push this # back into previous sections eventually, and simplify
define list-append
(lambda (lst1 lst2)
(if (> (list-length (lst1)) 0)
(list-append (except-last (lst1))
(prepend (last (lst1)) (lst2)))
(lst2)));
list= (list-append (vector 1 2 3) (vector 4 5 6)) (vector 1 2 3 4 5 6);
define append
(? x
(? lst
(if (> (list-length (lst)) 0)
(prepend (head (lst)) (append (x) (tail (lst))))
(vector (x)))));
list= (append 5 (vector 1 2)) (vector 1 2 5);
define select-match
(lambda (test lst)
(if (> (list-length (lst)) 0)
(if (test (head (lst)))
(prepend (head (lst)) (select-match (test) (tail (lst))))
(select-match (test) (tail (lst))))
(lst)));
define unique
(let ((store (make-cell 0)))
(lambda (x)
(let ((id (get! (store))))
(begin
(set! (store) (+ (id) 1))
(id)))));
= (unique new) 0;
= (unique new) 1;
= (unique new) 2;
not (= (unique new) (unique new));
define setup-this
(lambda (this self)
(if (number? / this)
(self)
(this)));
# okay, here it comes. don't panic! # I need to split this up into helpers, and simplify. # It basically just writes code for classes like we saw in # a previous section.
define prev-translate (translate);
define translate
(let ((prev (prev-translate)))
(? x
(if (number? (x))
(prev (x))
(if (= (head (x)) class)
(let ((name (list-ref (x) 1))
(args (list-ref (x) 2))
(fields (tail (tail (tail (x))))))
(translate
(vector
define
(name)
(vector
lambda
(prepend ext-this (args))
(vector
let
(append
(vector unique-id (vector unique new))
(map
(tail)
(select-match (? x (= (first (x)) field)) (fields))))
(vector
let
(vector
(vector
self
(vector
reflective
(vector
lambda
(vector self)
(vector
let
(vector
(vector
this
(vector setup-this
(vector ext-this)
(vector self))))
(vector
let
(vector (vector ignore-this 1))
(vector
lambda
(vector method)
(list-append
(prepend
cond
(list-append
(map
(? x
(vector
(vector = (vector method) (first (x)))
(second (x))))
(map (tail)
(select-match
(? x (= (first (x)) method))
(fields))))
(map
(? x
(vector
(vector = (vector method) (x))
(vector (x))))
(map (second)
(select-match
(? x (= (first (x)) field))
(fields))))))
(vector
(vector
(vector = (vector method) self)
(vector self))
(vector
(vector = (vector method) (name))
(vector self self))
(vector
(vector = (vector method) classname)
(name))
(vector
(vector = (vector method) unknown)
(vector lambda (vector x) 0))
(vector
(vector = (vector method) new)
0)
(vector
(vector = (vector method) unique-id)
(vector unique-id))
(vector
(vector = (vector method) ==)
(vector
lambda
(vector x)
(vector =
(vector unique-id)
(vector x unique-id))))
(vector self unknown (vector method)))))))))))
(vector
begin
(vector self new)
(vector self))))))))
(prev (x))))));
# revisit the point class example
class point (x y)
(method x (x))
(method y (y))
(method + (lambda ((p point))
(point new
(+ (x) (p x))
(+ (y) (p y)))))
(method = (lambda ((p point))
(and (= (x) (p x))
(= (y) (p y)))));
# note the appearance of new in the next line -- # this is the only difference to previous version
define point1 (point new 1 11);
define point2 (point new 2 22);
= 1 (point1 x);
= 22 (point2 y);
= 11 ((point new 11 12) x);
= 11 (((point new 11 12) point) x);
= 16 (((point new 16 17) point) x);
= 33 (point1 + (point2) y);
point1 + (point2) = (point new 3 33);
point2 + (point1) = (point new 3 33);
(point new 100 200) + (point new 200 100) = (point new 300 300);
instanceof point (point1);
not (instanceof int (point1));
# Check that virtual calls can be made to work. # They are a little awkward right now. # Should they be the default?
class c1 ()
(method getid 100)
(method altid (this getid));
class c2 ()
(field super-ref (make-cell 0))
(method new (set! (super-ref) (c1 / this)))
(method super (? x ((get! / super-ref) (x))))
(method unknown (? x (self super / x)))
(method getid 200);
= 100 / c1 new altid;
= 200 / c2 new altid;
39. wrapper class for cells
class cell (initial-value)
(field content (make-cell (initial-value)))
(method get (get! (content)))
(method set (lambda (new-value)
(set! (content) (new-value))))
(method reset (self set (initial-value)))
(method unknown (lambda (x) ((objectify (self get)) (x))));
define cell-test1 (cell new 15);
= 15 (cell-test1 get);
cell-test1 set 82;
= 82 (cell-test1 get);
define cell-test2 (cell new (point new 120 150));
define cell-test3 (cell new (point new 300 300));
cell-test2 + (cell-test3) = (point new 420 450);
not (cell-test2 = (cell-test3));
cell-test3 set (cell-test2);
cell-test2 = (cell-test3);
40. playing around with doors and rooms
class door ((src room) (dest room))
(method new (begin
(src add (self))
(dest add (self))))
(method access-from (lambda ((current room))
(cond ((current == (src)) (dest))
((current == (dest)) (src))
0)))
(method is-present (lambda ((current room))
(cond ((current == (src)) (true))
((current == (dest)) (true))
(false))));
class room (name)
(field content (container new))
(method name (name))
(method unknown (lambda (x) (content (x))));
# need to fix up containers to use object equality
define object-element
(lambda (n lst)
(> (list-length
(select-match (lambda (x) (x == (n))) (lst)))
0));
class container ()
(field contents (cell new (vector)))
(method inventory (contents get))
(method add (lambda (x)
(if (not (object-element (x) (contents get)))
(contents set (prepend (x) (contents get)))
(false))));
define hall (room new 0);
define kitchen (room new 1);
define door1 (door new (hall) (kitchen));
(first (hall inventory)) == (door1);
(first (kitchen inventory)) == (door1);
door1 access-from (hall) == (kitchen);
not (door1 access-from (hall) == (hall));
door1 access-from (kitchen) == (hall);
define stairs (room new 2);
define lawn (room new 3);
define bedroom (room new 4);
define nowhere (room new 0);
define door2 (door new (hall) (lawn));
define door3 (door new (hall) (stairs));
define door4 (door new (stairs) (bedroom));
class character ()
(field location (cell new 0))
(field name (cell new 0))
(method set-room (lambda ((r room))
(begin
(if (not (number? / location get))
(location get remove (self))
0)
(r add (self))
(location set (r)))))
(method get-room (location get))
(method set-name (lambda (n) (name set / n)))
(method get-name (name get))
(method update 0);
define find-max-helper
(lambda (test max idx n lst)
(if (> (list-length (lst)) 0)
(if (> (test (head (lst))) (max))
(find-max-helper (test) (test (head (lst))) (n) (+ (n) 1) (tail (lst)))
(find-max-helper (test) (max) (idx) (+ (n) 1) (tail (lst))))
(idx)));
define find-max-idx
(lambda (test lst)
(find-max-helper (test) (test (head (lst))) 0 0 (lst)));
define find-min-helper
(lambda (test max idx n lst)
(if (> (list-length (lst)) 0)
(if (< (test (head (lst))) (max))
(find-min-helper (test) (test (head (lst))) (n) (+ (n) 1) (tail (lst)))
(find-min-helper (test) (max) (idx) (+ (n) 1) (tail (lst))))
(idx)));
define find-min-idx
(lambda (test lst)
(find-min-helper (test) (test (head (lst))) 0 0 (lst)));
= 2 (find-max-idx (lambda (x) (x)) (vector 3 4 5 0));
= 1 (find-max-idx (lambda (x) (x)) (vector 3 5 4 0));
= 0 (find-max-idx (lambda (x) (x)) (vector 5 3 4 0));
# the robo class makes a character that patrols from room to room
class robo ()
(field super (character new))
(field timestamp (cell new 1))
(field timestamp-map (cell new (lambda (x) 0)))
(method unknown (lambda (x) (super (x))))
(method update
(let ((exits
(select-match (lambda (x) (instanceof door (x)))
(self location inventory))))
(let ((timestamps
(map (lambda (x) (timestamp-map get (x)))
(exits))))
(let ((chosen-exit (list-ref
(exits)
(find-min-idx (lambda (x) (x))
(timestamps))))
(current-tmap (timestamp-map get))
(current-t (timestamp get)))
(begin
(self location set (chosen-exit
access-from
(self location get)))
(timestamp-map set
(lambda ((d door))
(if (d == (chosen-exit))
(current-t)
(current-tmap (d)))))
(timestamp set (+ (timestamp get) 1)))))));
define myrobo (robo new);
myrobo set-room (stairs);
define which-room
(lambda ((rr robo))
(find-max-idx
(lambda ((r room)) (if (r == (rr get-room)) 1 0))
(vector (hall) (kitchen) (stairs) (lawn) (bedroom))));
define sequencer
(lambda (n current lst)
(if (< (current) (n))
(begin
(myrobo update)
(sequencer
(n)
(+ (current) 1)
(append
(which-room (myrobo))
(lst))))
(lst)));
# here is a list of the first 30 rooms the robot character visits # 0=hall, 1=kitchen, 2=stairs, 3=lawn, 4=bedroom
list= (sequencer 30 0 (vector)) (vector 4 2 0 3 0 1 0 2 4 2 0 3 0 1 0 2 4 2 0 3 0 1 0 2 4 2 0 3 0 1);
# Now should start to introduce a language to talk about what is # going on in the simulated world, and start to move away from # detailed mechanism
41. end of part 2, start of part 3
# The following parts of the message are the beginnings # of embedding an alternate visual primer
intro part3;
42. simulating unless gates
# for embedded image-and-logic-based primer
# practice with pure logic gate
# X unless Y = (X if Y=0, otherwise 0)
define unless / ? x / ? y / and (x) (not (y));
# if second input is true, output is blocked (false) # if second input is false, output copies first input
= (false) (unless (false) (false));
= (true) (unless (true) (false));
= (false) (unless (false) (true));
= (false) (unless (true) (true));
# To do: add a simple simulator for non-grid-based # logic -- much simpler to understand than # grid-based
# On to a grid-based logic simulation # first, need unbounded, mutable matrices
define make-matrix / ? default / (make-cell (hash-default (default)));
define matrix-set / ? m / ? x / ? addr / set! (m) / hash-add (get! (m)) (addr) (x);
define matrix-get / ? m / ? addr / hash-ref (get! (m)) (addr);
define test-matrix (make-matrix 0);
= 0 / matrix-get (test-matrix) / vector 1 2 3;
matrix-set (test-matrix) 10 / vector 1 2 3;
= 10 / matrix-get (test-matrix) / vector 1 2 3;
# go through a circuit of unless gates and analyze data flow
define unless-phase-1 /
? circuit /
assign state (make-matrix (false))
(begin
(map
(? gate /
assign x1 (list-ref (gate) 0) /
assign y1 (list-ref (gate) 1) /
assign x2 (list-ref (gate) 2) /
assign y2 (list-ref (gate) 3) /
assign v (list-ref (gate) 4) /
(if (= (x1) (x2))
(begin
(matrix-set (state) (v) / vector (x2) (y2) vert-value)
(matrix-set (state) (true) / vector (x2) (y2) vert-have)
(matrix-set (state) (true) / vector (x1) (y1) vert-want)
(gate))
(begin
(matrix-set (state) (v) / vector (x2) (y2) horiz-value)
(matrix-set (state) (true) / vector (x2) (y2) horiz-have)
(matrix-set (state) (true) / vector (x1) (y1) horiz-want)
(gate))))
(circuit))
(state));
# move forward one simulation step
define unless-phase-2 /
? circuit /
? state
(map
(? gate /
assign x1 (list-ref (gate) 0) /
assign y1 (list-ref (gate) 1) /
assign x2 (list-ref (gate) 2) /
assign y2 (list-ref (gate) 3) /
assign v (list-ref (gate) 4) /
assign nv (if (= (x1) (x2))
(if (matrix-get (state) / vector (x1) (y1) vert-have)
(and (matrix-get (state) /
vector (x1) (y1) vert-value)
(not (and (matrix-get (state) /
vector (x1) (y1) horiz-value)
(not (matrix-get (state) /
vector (x1) (y1) horiz-want)))))
(if (matrix-get (state) / vector (x1) (y1) horiz-have)
(matrix-get (state) / vector (x1) (y1) horiz-value)
(true)))
(if (matrix-get (state) / vector (x1) (y1) horiz-have)
(and (matrix-get (state) / vector (x1) (y1) horiz-value)
(not (and (matrix-get (state) /
vector (x1) (y1) vert-value)
(not (matrix-get (state) /
vector (x1) (y1) vert-want)))))
(if (matrix-get (state) / vector (x1) (y1) vert-have)
(matrix-get (state) / vector (x1) (y1) vert-value)
(true)))) /
vector (x1) (y1) (x2) (y2) (nv))
(circuit));
# wrap up both phases of simulation
define simulate-unless / ? circuit / assign state (unless-phase-1 (circuit)) / unless-phase-2 (circuit) (state);
# A circuit is a list of gates # Each gate is a list (x1 y1 x2 y2 v) # where the coordinates (x1,y1) and (x2,y2) represent # start and end points of a wire on a plane, carrying a # logic value v. # Wires copy values from their start point. # | # | (A) # V # -->--> # (B)(C) # # Wire C here copies from wire B. # If wire A is on, it blocks (sets to 0) C.
assign circuit1
(vector
(vector 2 2 4 2 (true))
(vector 4 2 6 2 (true))
(vector 6 2 8 2 (true))
(vector 6 4 6 2 (true))) /
assign circuit2
(vector
(vector 2 2 4 2 (true))
(vector 4 2 6 2 (true))
(vector 6 2 8 2 (false))
(vector 6 4 6 2 (true))) /
equal (simulate-unless (circuit1)) (circuit2);
# okay, now let us make a simple image class # we are going to encode each row as a single binary number, # rather than a vector, so that images will be pretty # obvious in the raw, uninterpreted message
define bit-get /
lambda (n offset) /
assign div2 (div (n) 2)
(if (= 0 / offset)
(not / = (n) / * 2 / div2)
(bit-get (div2) / - (offset) 1));
= 0 / bit-get (::.) 0;
= 1 / bit-get (::.) 1;
= 1 / bit-get (::.) 2;
= 0 / bit-get (::.) 3;
= 0 / bit-get (::.) 4;
= 0 / bit-get 8 0;
= 0 / bit-get 8 1;
= 0 / bit-get 8 2;
= 1 / bit-get 8 3;
define make-image / lambda (h w lst) / vector (h) (w) (lst);
define image-get / lambda (image row col) / assign h (list-ref (image) 0) / assign w (list-ref (image) 1) / assign lst (list-ref (image) 2) / assign bits (list-ref (lst) (row)) / bit-get (bits) (- (- (w) (col)) 1);
define image-height / ? image / list-ref (image) 0;
define image-width / ? image / list-ref (image) 1;
define test-image / make-image 3 5 / vector (:....) (:...:) (:....);
= 3 (image-height / test-image);
= 5 (image-width / test-image);
= (true) (image-get (test-image) 0 0);
= (false) (image-get (test-image) 0 1);
= (false) (image-get (test-image) 0 4);
= (true) (image-get (test-image) 1 0);
= (true) (image-get (test-image) 2 0);
= (true) (image-get (test-image) 1 4);
# need a way to join two lists
define merge-list /
? lst1 /
? lst2 /
(if (> (list-length / lst1) 0)
(prepend (head / lst1) (merge-list (tail / lst1) (lst2)))
(lst2));
define merge-lists /
? lst /
(if (> (list-length / lst) 2)
(merge-list (head / lst) (merge-lists / tail / lst))
(if (= (list-length / lst) 2)
(merge-list (head / lst) / (head / tail / lst))
(if (= (list-length / lst) 1)
(head / lst)
(vector))));
equal (vector 1 2 3 4) (merge-list (vector 1 2) (vector 3 4));
equal (vector 1 2 3 4) (merge-lists (vector (vector 1 2) (vector 3) (vector 4)));
# helper for pairing
define prefix / ? x / ? lst / map (? y (vector (x) (y))) (lst);
equal (vector (vector 1 10) (vector 1 11))
(prefix 1 (vector 10 11));
# need a way to take product of domains
define pairing /
? lst1 /
? lst2
(if (> (list-length / lst1) 0)
(merge-list (prefix (head / lst1) (lst2))
(pairing (tail / lst1) (lst2)))
(vector));
equal (vector (vector 1 10) (vector 1 11) (vector 2 10) (vector 2 11))
(pairing (vector 1 2) (vector 10 11));
# need a way to make counting sets
define count /
? lo / ? hi
(if (<= (lo) (hi))
(prepend (lo) (count (+ (lo) 1) (hi)))
(vector));
equal (vector 0 1 2 3 4) (count 0 4);
# given an image of a circuit, extract a model. # wire elements are centered on multiples of 8
# individual element...
define distill-element /
? image / ? xlogic / ? ylogic / ? xmid / ? ymid
(if (image-get (image) (ymid) (xmid))
(assign vert (image-get (image) (+ (ymid) 4) (xmid)) /
assign dx (if (vert) 0 1) /
assign dy (if (vert) 1 0) /
assign pos (image-get (image)
(+ (ymid) / + (* 4 / dy) (* 2 / dx))
(+ (xmid) / - (* 4 / dx) (* 2 / dy))) /
assign sgn (if (pos) 1 (- 0 1)) /
assign dx (* (sgn) (dx)) /
assign dy (* (sgn) (dy)) /
assign active (image-get (image) (+ (ymid) (dx)) (- (xmid) (dy))) /
(vector
(vector (- (xlogic) (dx))
(- (ylogic) (dy))
(+ (xlogic) (dx))
(+ (ylogic) (dy))
(active))))
(vector));
# full circuit...
define distill-circuit /
? image /
assign h (div (image-height / image) 8) /
assign w (div (image-width / image) 8)
(merge-lists
(map (? v /
assign xlogic (list-ref (v) 0) /
assign ylogic (list-ref (v) 1) /
assign xmid (* 8 / xlogic) /
assign ymid (* 8 / ylogic) /
distill-element (image) (xlogic) (ylogic) (xmid) (ymid))
(pairing (count 1 (- (w) 1))
(count 1 (- (h) 1)))));
43. testing alternate primer based on gates: cos_not circuit
# This section contains one or more representations of a circuit # constructed using UNLESS gates.
define cos_not_gate / vector (vector 0 6 2 6 (true)) (vector 2 6 4 6 (true)) (vector 4 6 6 6 (true)) (vector 6 6 8 6 (true)) (vector 8 4 8 6 (true)) (vector 8 6 8 8 (false)) (vector 8 8 10 8 (false)) (vector 10 8 12 8 (false)) (vector 12 8 12 6 (false)) (vector 12 6 14 6 (false)) (vector 14 6 16 6 (false)) (vector 16 6 18 6 (false)) (vector 18 6 20 6 (false));
define cos_not_image / make-image 109 169 / vector (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:.............................................................:::::.....................................................................................................:) (:..............................................................:::......................................................................................................:) (:...........:...............:...............:...............:...:...........................................:...............:...............:...............:...........:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..............................................::..............::..............::..............::..........:) (:..::::::::::::....::::::::::::....::::::::::::....::::::::::::....................................::::::::::::....::::::::::::....::::::::::::....::::::::::::.........:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..............................................::..............::..............::..............::..........:) (:...........:...............:...............:...............:...................................:...........:...............:...............:...............:...........:) (:...............................................................:..............................:::......................................................................:) (:...............................................................:.............................:::::.....................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:.............................................................:::::.............................:.......................................................................:) (:..............................................................:::..............................:.......................................................................:) (:...............................................................:...........:...............:...........................................................................:) (:...........................................................................::..............::..........................................................................:) (:..................................................................::::::::::::....::::::::::::.........................................................................:) (:...........................................................................::..............::..........................................................................:) (:...........................................................................:...............:...........................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::);
equal (cos_not_gate) (distill-circuit (cos_not_image));

Run simulator
44. testing alternate primer based on gates: cos_and circuit
# This section contains one or more representations of a circuit # constructed using UNLESS gates.
define cos_and_gate / vector (vector 0 2 2 2 (true)) (vector 0 8 2 8 (true)) (vector 2 2 4 2 (true)) (vector 2 4 4 4 (true)) (vector 2 6 4 6 (true)) (vector 2 8 4 8 (true)) (vector 4 2 4 4 (true)) (vector 4 8 4 6 (true)) (vector 4 4 6 4 (false)) (vector 4 6 6 6 (false)) (vector 6 4 8 4 (false)) (vector 6 6 8 6 (false)) (vector 8 4 10 4 (false)) (vector 8 6 10 6 (false)) (vector 10 2 10 4 (true)) (vector 10 4 10 6 (true)) (vector 10 6 10 8 (true)) (vector 10 8 12 8 (true)) (vector 12 8 14 8 (true)) (vector 14 8 16 8 (true)) (vector 16 8 18 8 (true));
define cos_and_image / make-image 88 153 / vector (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:...........:...............:...........................................................................................................................:) (:..:::::::::::.....:::::::::::..........................................................................................................................:) (:..::::::::::::....::::::::::::.........................................................................................................................:) (:..:::::::::::.....:::::::::::..........................................................................................................................:) (:...........:...............:...........................................................................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:.............................:::::...........................................:::::.....................................................................:) (:..............................:::.............................................:::......................................................................:) (:...........................:...:...........:...............:...............:...:.......................................................................:) (:..................:::::::::::..............::..............::..............::..........................................................................:) (:..................::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................................................:) (:..................:::::::::::..............::..............::..............::..........................................................................:) (:...........................:...............:...............:...............:...........................................................................:) (:..............................................................................:::......................................................................:) (:..............................................................................:::......................................................................:) (:..............................................................................:::......................................................................:) (:..............................................................................:::......................................................................:) (:..............................................................................:::......................................................................:) (:..............................................................................:::......................................................................:) (:..............................................................................:::......................................................................:) (:..............................................................................:::......................................................................:) (:..............................................................................:::......................................................................:) (:.............................................................................:::::.....................................................................:) (:..............................................................................:::......................................................................:) (:...........................:...............:...............:...............:...:.......................................................................:) (:..................:::::::::::..............::..............::..............::..........................................................................:) (:..................::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................................................:) (:..................:::::::::::..............::..............::..............::..........................................................................:) (:...........................:...:...........:...............:...............:...........................................................................:) (:..............................:::.............................................:::......................................................................:) (:.............................:::::............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::.............................................:::......................................................................:) (:..............................:::............................................:::::.....................................................................:) (:..............................:::.............................................:::......................................................................:) (:...........:...............:...................................................:...........:...............:...............:...............:...........:) (:..:::::::::::.....:::::::::::.....................................................:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........:) (:..::::::::::::....::::::::::::....................................................::::::::::::....::::::::::::....::::::::::::....::::::::::::.........:) (:..:::::::::::.....:::::::::::.....................................................:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........:) (:...........:...............:...............................................................:...............:...............:...............:...........:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:.......................................................................................................................................................:) (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::);
equal (cos_and_gate) (distill-circuit (cos_and_image));

Run simulator
45. testing alternate primer based on gates: cos_or circuit
# This section contains one or more representations of a circuit # constructed using UNLESS gates.
define cos_or_gate / vector (vector 2 4 4 4 (true)) (vector 2 6 4 6 (true)) (vector 4 4 6 4 (true)) (vector 4 6 6 6 (true)) (vector 6 4 8 4 (true)) (vector 6 6 8 6 (true)) (vector 8 4 10 4 (true)) (vector 8 6 10 6 (true)) (vector 8 8 10 8 (true)) (vector 10 2 10 4 (true)) (vector 10 4 10 6 (false)) (vector 10 6 10 8 (false)) (vector 10 8 12 8 (true)) (vector 12 8 14 8 (true)) (vector 14 8 16 8 (true)) (vector 16 8 18 8 (true));
define cos_or_image / make-image 93 169 / vector (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:..............................................................................:::......................................................................................:) (:..............................................................................:::......................................................................................:) (:..............................................................................:::......................................................................................:) (:..............................................................................:::......................................................................................:) (:..............................................................................:::......................................................................................:) (:..............................................................................:::......................................................................................:) (:..............................................................................:::......................................................................................:) (:..............................................................................:::......................................................................................:) (:..............................................................................:::......................................................................................:) (:.............................................................................:::::.....................................................................................:) (:..............................................................................:::......................................................................................:) (:...........................:...............:...............:...............:...:.......................................................................................:) (:..................:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................................:) (:..................::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................................................................:) (:..................:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................................:) (:...........................:...............:...............:...............:...........................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:.............................................................................:::::.....................................................................................:) (:..............................................................................:::......................................................................................:) (:...........................:...............:...............:...............:...:.......................................................................................:) (:..................:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................................:) (:..................::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................................................................:) (:..................:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................................:) (:...........................:...............:...............:...............:...........................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:...............................................................................:.......................................................................................:) (:.............................................................................:::::.....................................................................................:) (:..............................................................................:::......................................................................................:) (:...........................................................................:...:...........:...............:...............:...............:...........................:) (:..................................................................:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................:) (:..................................................................::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................:) (:..................................................................:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................:) (:...........................................................................:...............:...............:...............:...............:...........................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::);
equal (cos_or_gate) (distill-circuit (cos_or_image));

Run simulator
46. testing alternate primer based on gates: cos_nor circuit
# This section contains one or more representations of a circuit # constructed using UNLESS gates.
define cos_nor_gate / vector (vector 0 6 2 6 (true)) (vector 0 8 2 8 (true)) (vector 2 6 4 6 (true)) (vector 2 8 4 8 (true)) (vector 4 6 6 6 (true)) (vector 4 8 6 8 (true)) (vector 6 6 8 6 (true)) (vector 6 8 8 8 (true)) (vector 8 4 8 6 (true)) (vector 8 6 8 8 (false)) (vector 8 8 8 10 (false)) (vector 8 10 10 10 (false)) (vector 10 10 12 10 (false)) (vector 12 10 14 10 (false)) (vector 14 10 16 10 (false)) (vector 16 10 18 10 (false)) (vector 18 10 20 10 (false));
define cos_nor_image / make-image 125 169 / vector (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:..............................................................:::......................................................................................................:) (:.............................................................:::::.....................................................................................................:) (:..............................................................:::......................................................................................................:) (:...........:...............:...............:...............:...:.......................................................................................................:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................................................:) (:..::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................................................................................:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................................................:) (:...........:...............:...............:...............:...........................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:.............................................................:::::.....................................................................................................:) (:..............................................................:::......................................................................................................:) (:...........:...............:...............:...............:...:.......................................................................................................:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................................................:) (:..::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................................................................................:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................................................:) (:...........:...............:...............:...............:...........................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:...............................................................:.......................................................................................................:) (:.............................................................:::::.....................................................................................................:) (:..............................................................:::......................................................................................................:) (:...............................................................:...........:...............:...............:...............:...............:...............:...........:) (:...........................................................................::..............::..............::..............::..............::..............::..........:) (:..................................................................::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::.........:) (:...........................................................................::..............::..............::..............::..............::..............::..........:) (:...........................................................................:...............:...............:...............:...............:...............:...........:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::);
equal (cos_nor_gate) (distill-circuit (cos_nor_image));

Run simulator
47. testing alternate primer based on gates: cos_osc circuit
# This section contains one or more representations of a circuit # constructed using UNLESS gates.
define cos_osc_gate / vector (vector 4 8 6 8 (true)) (vector 6 8 8 8 (true)) (vector 8 6 8 8 (true)) (vector 10 6 8 6 (true)) (vector 8 8 10 8 (false)) (vector 12 6 10 6 (false)) (vector 10 8 12 8 (false)) (vector 12 8 12 6 (false)) (vector 12 8 14 8 (false)) (vector 14 8 16 8 (false));
define cos_osc_image / make-image 120 169 / vector (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:...................................................................:...............:...................................................................................:) (:..................................................................:::::::::::.....::...................................................................................:) (:.................................................................::::::::::::....::::::::::::..........................................................................:) (:..................................................................:::::::::::.....::...................................................................................:) (:...................................................................:...............:...........:.......................................................................:) (:..............................................................:::.............................:::......................................................................:) (:..............................................................:::............................:::::.....................................................................:) (:..............................................................:::..............................:.......................................................................:) (:..............................................................:::..............................:.......................................................................:) (:..............................................................:::..............................:.......................................................................:) (:..............................................................:::..............................:.......................................................................:) (:..............................................................:::..............................:.......................................................................:) (:..............................................................:::..............................:.......................................................................:) (:..............................................................:::..............................:.......................................................................:) (:.............................................................:::::.............................:.......................................................................:) (:..............................................................:::..............................:.......................................................................:) (:...........................................:...............:...:...........:...............:...............:...............:...........................................:) (:..................................:::::::::::.....:::::::::::..............::..............::..............::..............::..........................................:) (:..................................::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................:) (:..................................:::::::::::.....:::::::::::..............::..............::..............::..............::..........................................:) (:...........................................:...............:...............:...............:...............:...............:...........................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::);
equal (cos_osc_gate) (distill-circuit (cos_osc_image));

Run simulator
48. testing alternate primer based on gates: cos_sr circuit
# This section contains one or more representations of a circuit # constructed using UNLESS gates.
define cos_sr_gate / vector (vector 0 2 2 2 (true)) (vector 0 8 2 8 (true)) (vector 2 2 4 2 (true)) (vector 2 8 4 8 (true)) (vector 4 2 6 2 (true)) (vector 4 6 6 6 (true)) (vector 4 8 6 8 (true)) (vector 6 8 6 6 (true)) (vector 6 2 8 2 (true)) (vector 6 6 8 6 (false)) (vector 8 4 8 6 (false)) (vector 8 2 10 2 (true)) (vector 10 4 8 4 (false)) (vector 8 6 10 6 (false)) (vector 10 6 10 8 (false)) (vector 10 2 12 2 (true)) (vector 12 4 10 4 (false)) (vector 10 6 12 6 (false)) (vector 10 8 12 8 (false)) (vector 12 6 12 4 (false)) (vector 12 2 14 2 (true)) (vector 14 4 12 4 (false)) (vector 12 8 14 8 (false)) (vector 14 2 14 4 (true)) (vector 16 4 14 4 (true)) (vector 14 8 16 8 (false)) (vector 16 8 18 8 (false)) (vector 18 8 20 8 (false));
define cos_sr_image / make-image 88 169 / vector (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:...........:...............:...............:...............:...............:...............:...............:...........................................................:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................:) (:..::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................................:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................:) (:...........:...............:...............:...............:...............:...............:...............:...........................................................:) (:..............................................................................................................:::......................................................:) (:..............................................................................................................:::......................................................:) (:..............................................................................................................:::......................................................:) (:..............................................................................................................:::......................................................:) (:..............................................................................................................:::......................................................:) (:..............................................................................................................:::......................................................:) (:..............................................................................................................:::......................................................:) (:..............................................................................................................:::......................................................:) (:..............................................................................................................:::......................................................:) (:.............................................................................................................:::::.....................................................:) (:..............................................................................................................:::......................................................:) (:...................................................................:...............:...............:...........:...:...................................................:) (:..................................................................::..............::..............::..............:::::::::::..........................................:) (:.................................................................::::::::::::....::::::::::::....::::::::::::....::::::::::::..........................................:) (:..................................................................::..............::..............::..............:::::::::::..........................................:) (:...................................................................:...............:...........:...:...............:...................................................:) (:...............................................................:..............................:::......................................................................:) (:...............................................................:.............................:::::.....................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:...............................................................:...............................:.......................................................................:) (:.............................................................:::::.............................:.......................................................................:) (:..............................................................:::..............................:.......................................................................:) (:...........................................:...............:...:...........:...............:...........................................................................:) (:..................................:::::::::::..............::..............::..............::..........................................................................:) (:..................................::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................................................:) (:..................................:::::::::::..............::..............::..............::..........................................................................:) (:...........................................:...:...........:...............:...............:...........................................................................:) (:..............................................:::..............................:.......................................................................................:) (:.............................................:::::.............................:.......................................................................................:) (:..............................................:::..............................:.......................................................................................:) (:..............................................:::..............................:.......................................................................................:) (:..............................................:::..............................:.......................................................................................:) (:..............................................:::..............................:.......................................................................................:) (:..............................................:::..............................:.......................................................................................:) (:..............................................:::..............................:.......................................................................................:) (:..............................................:::..............................:.......................................................................................:) (:..............................................:::............................:::::.....................................................................................:) (:..............................................:::.............................:::......................................................................................:) (:...........:...............:...............:...................................:...........:...............:...............:...............:...............:...........:) (:..:::::::::::.....:::::::::::.....:::::::::::..............................................::..............::..............::..............::..............::..........:) (:..::::::::::::....::::::::::::....::::::::::::....................................::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::.........:) (:..:::::::::::.....:::::::::::.....:::::::::::..............................................::..............::..............::..............::..............::..........:) (:...........:...............:...............:...............................................:...............:...............:...............:...............:...........:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::);
equal (cos_sr_gate) (distill-circuit (cos_sr_image));

Run simulator
49. testing alternate primer based on gates: cos_d circuit
# This section contains one or more representations of a circuit # constructed using UNLESS gates.
define cos_d_gate / vector (vector 0 2 2 2 (true)) (vector 0 6 2 6 (true)) (vector 2 2 4 2 (true)) (vector 2 6 4 6 (true)) (vector 4 2 6 2 (true)) (vector 4 6 6 6 (true)) (vector 6 2 8 2 (true)) (vector 6 6 8 6 (true)) (vector 8 2 10 2 (true)) (vector 8 6 10 6 (true)) (vector 10 6 10 4 (true)) (vector 10 10 10 8 (true)) (vector 10 2 12 2 (true)) (vector 10 4 12 4 (true)) (vector 10 6 12 6 (true)) (vector 10 8 12 8 (true)) (vector 12 10 10 10 (true)) (vector 12 0 12 2 (true)) (vector 12 2 12 4 (false)) (vector 12 6 12 8 (true)) (vector 12 10 12 12 (true)) (vector 12 4 14 4 (true)) (vector 12 8 14 8 (false)) (vector 14 10 12 10 (true)) (vector 12 12 14 12 (true)) (vector 14 0 14 2 (true)) (vector 14 2 14 4 (true)) (vector 14 4 14 6 (false)) (vector 14 6 14 8 (false)) (vector 14 8 14 10 (false)) (vector 16 10 14 10 (true)) (vector 14 12 16 12 (true)) (vector 16 12 18 12 (true)) (vector 18 12 20 12 (true));
define cos_d_image / make-image 109 169 / vector (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:..............................................................................................:::.............:::......................................................:) (:..............................................................................................:::.............:::......................................................:) (:..............................................................................................:::.............:::......................................................:) (:..............................................................................................:::.............:::......................................................:) (:..............................................................................................:::.............:::......................................................:) (:..............................................................................................:::.............:::......................................................:) (:..............................................................................................:::.............:::......................................................:) (:..............................................................................................:::.............:::......................................................:) (:..............................................................................................:::.............:::......................................................:) (:.............................................................................................:::::...........:::::.....................................................:) (:..............................................................................................:::.............:::......................................................:) (:...........:...............:...............:...............:...............:...............:...:...............:.......................................................:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................:) (:..::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................................................:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................:) (:...........:...............:...............:...............:...............:...............:...........................................................................:) (:...............................................................................................:..............:::......................................................:) (:...............................................................................................:..............:::......................................................:) (:...............................................................................................:..............:::......................................................:) (:...............................................................................................:..............:::......................................................:) (:...............................................................................................:..............:::......................................................:) (:...............................................................................................:..............:::......................................................:) (:...............................................................................................:..............:::......................................................:) (:...............................................................................................:..............:::......................................................:) (:...............................................................................................:..............:::......................................................:) (:.............................................................................................:::::...........:::::.....................................................:) (:..............................................................................................:::.............:::......................................................:) (:...........................................................................................:...:...........:...:.......................................................:) (:..................................................................................:::::::::::.....:::::::::::..........................................................:) (:..................................................................................::::::::::::....::::::::::::.........................................................:) (:..................................................................................:::::::::::.....:::::::::::..........................................................:) (:...............................................................................:...........:...............:...........................................................:) (:..............................................................................:::..............................:.......................................................:) (:.............................................................................:::::.............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::............................:::::.....................................................:) (:..............................................................................:::.............................:::......................................................:) (:...........:...............:...............:...............:...............:...............:...................:.......................................................:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................:) (:..::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::....::::::::::::.........................................................................:) (:..:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........................................................................:) (:...........:...............:...............:...............:...............:...............:...........................................................................:) (:..............................................................................................:::..............:.......................................................:) (:..............................................................................................:::..............:.......................................................:) (:..............................................................................................:::..............:.......................................................:) (:..............................................................................................:::..............:.......................................................:) (:..............................................................................................:::..............:.......................................................:) (:..............................................................................................:::..............:.......................................................:) (:..............................................................................................:::..............:.......................................................:) (:..............................................................................................:::..............:.......................................................:) (:..............................................................................................:::..............:.......................................................:) (:.............................................................................................:::::...........:::::.....................................................:) (:..............................................................................................:::.............:::......................................................:) (:...........................................................................................:...:...........:...:.......................................................:) (:..................................................................................:::::::::::..............::..........................................................:) (:..................................................................................::::::::::::....::::::::::::.........................................................:) (:..................................................................................:::::::::::..............::..........................................................:) (:...............................................................................:...........:...............:...........................................................:) (:..............................................................................:::..............................:.......................................................:) (:.............................................................................:::::.............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::..............................:.......................................................:) (:..............................................................................:::............................:::::.....................................................:) (:..............................................................................:::.............................:::......................................................:) (:...................................................................................:...............:...........:...:...................................................:) (:..................................................................................:::::::::::.....:::::::::::.....:::::::::::..........................................:) (:.................................................................................::::::::::::....::::::::::::....::::::::::::..........................................:) (:..................................................................................:::::::::::.....:::::::::::.....:::::::::::..........................................:) (:...................................................................................:...............:...............:...................................................:) (:..............................................................................................:::......................................................................:) (:..............................................................................................:::......................................................................:) (:..............................................................................................:::......................................................................:) (:..............................................................................................:::......................................................................:) (:..............................................................................................:::......................................................................:) (:..............................................................................................:::......................................................................:) (:..............................................................................................:::......................................................................:) (:..............................................................................................:::......................................................................:) (:..............................................................................................:::......................................................................:) (:.............................................................................................:::::.....................................................................:) (:..............................................................................................:::......................................................................:) (:...............................................................................................:...........:...............:...............:...............:...........:) (:..................................................................................................:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........:) (:..................................................................................................::::::::::::....::::::::::::....::::::::::::....::::::::::::.........:) (:..................................................................................................:::::::::::.....:::::::::::.....:::::::::::.....:::::::::::..........:) (:...........................................................................................................:...............:...............:...............:...........:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:.......................................................................................................................................................................:) (:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::);
equal (cos_d_gate) (distill-circuit (cos_d_image));

Run simulator
50. probing networks of unless gates
define set-input /
? circuit /
? index /
? value /
assign wire (list-ref (circuit) (index))
(map (? w (if (equal (w) (wire))
(vector (list-ref (w) 0)
(list-ref (w) 1)
(list-ref (w) 2)
(list-ref (w) 3)
(value))
(w)))
(circuit));
define read-output / ? circuit / ? index / assign len (list-length / circuit) / assign wire (list-ref (circuit) / - (- (len) 1) (index)) / list-ref (wire) 4;
define sim /
? circuit / ? steps / ? setter
(if (> (steps) 0)
(sim (simulate-unless (setter / circuit)) (- (steps) 1) (setter))
(circuit));
define smart-sim / ? circuit / ? setter / sim (circuit) (list-length / circuit) (setter);
# test cos_not gate
define cos_not_harness / ? x / assign c (cos_not_gate) / assign c (smart-sim (c) (? c (set-input (c) 0 (x)))) / read-output (c) 0;
= (false) / cos_not_harness / true;
= (true) / cos_not_harness / false;
# test cos_and gate
define cos_and_harness / ? x / ? y / assign c (cos_and_gate) / assign c (smart-sim (c) (? c (set-input (set-input (c) 0 (x)) 1 (y)))) / read-output (c) 0;
= (false) / cos_and_harness (false) (false);
= (false) / cos_and_harness (false) (true);
= (false) / cos_and_harness (true) (false);
= (true) / cos_and_harness (true) (true);
# this code is more awkward than it needs to be - # should make circuits mutable
51. end of part 3, start of part 4
# The following parts of the message start # to introduce some self-reference into the message
intro part4;
52. a mechanism for referring to parts of the message
# Many choices for how to do this. # Could do it without special machinery by using the # standard A-B trick for giving e.g. a Turing machine # access to its own description. # Instead, will simply introduce a "primer" function # that gives access to every statement made so far # (question: should future statements be included? # tentatively assume YES: will simplify # discussion of creating modified copies of the # complete message).
# For now, assume primer is a list of statements, # with each statement being a list in the same # form as "translate" functions expect. # This means that there is, for now, no # distinction between unary or binary, # and the "/" structure is expanded.
intro primer;
# this line is referred to later - change/move carefully
equal (list-ref (primer) 0) (vector intro 1);
equal (list-ref (primer) 1) (vector intro 2);
equal (list-ref (primer) 2) (vector intro 3);
assign idx (list-find (primer) (vector intro primer) (? x 0))
(equal (list-ref (primer) (+ (idx) 1))
(vector equal
(vector list-ref (vector primer) 0)
(vector vector intro 1)));
# Now, we could return to the MUD, simulate an agent A # transferring a copy of the primer to another agent B, # and then show B making a modified copy of that primer # and passing it back to A.
# We could also show agents experimenting with the # primer in various ways.
# Message is pretty solid up to this point. # For testing purposes, useful to save state here to disk, # command: DISK-SAVE base
53. some preparatory work for integrating with Java code
class Object ()
(method add-one (lambda (x) (+ (x) 1)))
(method unknown (lambda (x) (x)))
(method <init>-V (self))
(method <init> (self))
(method classname Object)
(method equals-Object-Z (this ==))
(method equals (self equals-Object-Z))
(method act (true))
(method isobj (true));
define java-object / Object;
define act / ? x / true;
#(class java-string () # (field super (java-object new)) # (method classname String) # (method unknown (lambda (x) (super (x)))));
# inconsistency of various kinds of equality throughout message # needs to be cleaned up
class Integer ()
(field super (java-object new))
(field value (cell new 0))
(method <init> (self))
(method <init>-V (self))
(method <init>-I-V (lambda (v)
(begin
(value set (v))
(self))))
(method intValue-V (value get))
(method intValue (self intValue-V))
(method equals-Object-Z (lambda (o) (if (= (o classname) Integer)
(= (value get) (o value get))
(false))))
(method equals (self equals-Object-Z))
(method get (value get))
(method set (lambda(x)
(value set
(if (number? / x)
(x)
(x intValue)))))
(method classname Integer)
(method unknown (lambda (x) (super (x))));
# string is basically the same as an integer
class String ()
(field super (java-object new))
(field value (cell new 0))
(method <init> (self))
(method <init>-V (self))
(method <init>-String-V (lambda (v)
(begin
(value set (v value get))
(self))))
(method int-init (lambda (x)
(begin
(value set (x))
(self))))
(method intValue-V (value get))
(method intValue (self intValue-V))
(method get (value get))
(method set (lambda(x)
(value set
(if (number? / x)
(x)
(x intValue)))))
(method equals-Object-Z (lambda (o) (if (= (o classname) String)
(= (value get) (o value get))
(false))))
(method equals (self equals-Object-Z))
(method classname String)
(method unknown (lambda (x) (super (x))));
# will need to install class hierarchy, just hardcode a few things for now
define java
(? x / ? y
(cond ((= (y) String) (String))
((= (y) Object) (java-object))
((= (y) Integer) (Integer))
(java-object)));
(java util String) new isobj;
= ((java util String) new add-one 15) 16;
class java-numeric ()
(field super (java-object new))
(method unknown (lambda (x) (super (x))))
(field java-content (cell new 0))
(method get (java-content get))
(method init (lambda (v)
(begin
(self set (v))
(self))))
(method set (lambda (v) (java-content set (v))));
define byte (java-numeric);
define char (java-numeric);
define double (java-numeric);
define float (java-numeric);
define int (java-numeric);
define long (java-numeric);
define short (java-numeric);
define boolean (java-numeric);
define void (java-numeric);
define java-test1 (int new);
java-test1 set 15;
= 15 (java-test1 get);
define java-test2 (int new init 17);
= 17 (java-test2 get);
define state-machine-test1
(? x
(cond ((= (x) 1) 20)
((= (x) 2) 40)
((= (x) 3) 60)
0));
= (state-machine-test1 3) 60;
# really ought to go back and be clear about eager/laziness issues
define state-machine-test2
(? x
(cond ((= (x) 1) (java-test1 set 20))
((= (x) 2) (java-test1 set 40))
((= (x) 3) (java-test1 set 60))
0));
state-machine-test2 2;
= (java-test1 get) 40;
define compare-object-reference
(lambda (o1 o2)
(if (number? / o1)
(number? / o2)
(= (o1 unique-id) (o2 unique-id))));
define jvm-maker
(lambda (vars stack pc ret)
(? op
(begin
(pc set (+ (pc get) 1)) /
cond ((= (op) new)
(lambda (type)
(stack-push (stack) ((type) new))))
((= (op) dup)
(stack-push (stack) (stack-peek (stack))))
((= (op) checkcast)
(lambda (t)
1))
((or (= (op) astore) (= (op) istore))
(lambda (index)
(vars set (hash-add (vars get) (index) (stack-pop (stack))))))
((or (= (op) aload) (= (op) iload))
(lambda (index)
(stack-push (stack) (hash-ref (vars get) (index)))))
((or (= (op) iconst) (= (op) ldc))
(lambda (val)
(stack-push (stack) (val))))
((= (op) aconst_null)
(stack-push (stack) 0))
((= (op) instanceof)
(lambda (t)
(stack-push
(stack)
(not / number? / (stack-pop / stack) (t new classname)))))
((= (op) getfield)
(lambda (key ignore)
(stack-push (stack) ((stack-pop (stack)) (key) get))))
((= (op) putfield)
(lambda (key ignore)
(let ((val (stack-pop (stack))))
((stack-pop (stack)) (key) set (val)))))
((= (op) imul)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(stack-push (stack)
(* (v1) (v2))))))
((= (op) iadd)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(stack-push (stack)
(+ (v1) (v2))))))
((= (op) isub)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(stack-push (stack)
(- (v1) (v2))))))
((= (op) goto)
(lambda (x)
(pc set (x))))
((= (op) iflt)
(lambda (x)
(if (< (stack-pop (stack)) 0)
(pc set (x))
0)))
((= (op) ifle)
(lambda (x)
(if (< (stack-pop (stack)) 1)
(pc set (x))
0)))
((= (op) ifgt)
(lambda (x)
(if (> (stack-pop (stack)) 0)
(pc set (x))
0)))
((= (op) ifge)
(lambda (x)
(if (>= (stack-pop (stack)) 0)
(pc set (x))
0)))
((= (op) ifne)
(lambda (x)
(if (not (= (stack-pop (stack)) 0))
(pc set (x))
0)))
((= (op) ifeq)
(lambda (x)
(if (= (stack-pop (stack)) 0)
(pc set (x))
0)))
((= (op) if_icmpne)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(lambda (x)
(if (not (= (v1) (v2)))
(pc set (x))
0)))))
((= (op) if_icmpeq)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(lambda (x)
(if (= (v1) (v2))
(pc set (x))
0)))))
((= (op) if_acmpne)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(lambda (x)
(if (not (compare-object-reference (v1) (v2)))
(pc set (x))
0)))))
((= (op) if_acmpeq)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(lambda (x)
(if (compare-object-reference (v1) (v2))
(pc set (x))
0)))))
((= (op) if_icmpge)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(lambda (x)
(if (>= (v1) (v2))
(pc set (x))
0)))))
((= (op) if_icmpgt)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(lambda (x)
(if (> (v1) (v2))
(pc set (x))
0)))))
((= (op) if_icmple)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(lambda (x)
(if (<= (v1) (v2))
(pc set (x))
0)))))
((= (op) if_icmplt)
(let ((v2 (stack-pop (stack))))
(let ((v1 (stack-pop (stack))))
(lambda (x)
(if (< (v1) (v2))
(pc set (x))
0)))))
((= (op) ifnull)
(lambda (x)
(if (number? / stack-pop (stack))
(pc set (x))
0)))
((= (op) ifnonnull)
(lambda (x)
(if (not (number? / stack-pop (stack)))
(pc set (x))
0)))
((= (op) return)
(begin (ret set (hash-ref (vars get) 0))
(pc set -1)))
((= (op) ireturn)
(begin (ret set (stack-pop (stack)))
(pc set -1)))
((= (op) areturn)
(begin (ret set (stack-pop (stack)))
(pc set -1)))
((= (op) goto)
(lambda (target)
(pc set (target))))
((= (op) invokevirtual)
(lambda (target m n)
(let ((result (stack-call (stack) (target) (m))))
(if (= (n) 1)
(stack-push (stack) (result))
0))))
((= (op) invokeinterface)
(lambda (target m n ignore)
(let ((result (stack-call (stack) (target) (m))))
(if (= (n) 1)
(stack-push (stack) (result))
0))))
((= (op) invokespecial)
(lambda (target m n)
(let ((result (stack-call-special (stack)
(hash-ref (vars get) 0)
(target)
(m))))
(if (= (n) 1)
(stack-push (stack) (result))
0))))
0)));
define stack-call
(lambda (stack target ct)
(if (= (ct) 0)
((stack-pop (stack)) (target))
(let ((arg (stack-pop (stack))))
((stack-call (stack) (target) (- (ct) 1)) (arg)))));
define stack-call-special
(lambda (stack self target ct)
(if (= (ct) 0)
(let ((act (stack-pop / stack)))
(if (act == (self))
(act super (target))
(act (target))))
(let ((arg (stack-pop (stack))))
((stack-call-special (stack) (self) (target) (- (ct) 1)) (arg)))));
define stack-push
(lambda (stack x)
(stack set (prepend (x) (stack get))));
define stack-pop
(lambda (stack)
(let ((v (head (stack get))))
(begin
(stack set (tail (stack get)))
(v))));
define stack-peek
(lambda (stack)
(head (stack get)));
define stack-test1 (cell new (vector 5 3 1));
= (stack-pop (stack-test1)) 5;
= (stack-peek (stack-test1)) 3;
= (stack-pop (stack-test1)) 3;
stack-push (stack-test1) 7;
= (stack-pop (stack-test1)) 7;
define vars-test1 (cell new (hash-null));
define pc-test1 (cell new 0);
define ret-test1 (cell new 0);
define test-jvm (jvm-maker (vars-test1) (stack-test1) (pc-test1) (ret-test1));
stack-push (stack-test1) 4;
test-jvm dup;
= (stack-pop (stack-test1)) 4;
= (stack-pop (stack-test1)) 4;
stack-push (stack-test1) 66;
stack-push (stack-test1) 77;
test-jvm astore 3;
= (stack-pop (stack-test1)) 66;
test-jvm aload 3;
= (stack-pop (stack-test1)) 77;
class test-class ()
(field x ((int) new))
(field y ((int) new));
define test-this (test-class new);
test-this x set 5;
= (test-this x get) 5;
stack-push (stack-test1) (test-this);
= ((stack-pop (stack-test1)) x get) 5;
stack-push (stack-test1) (test-this);
test-jvm astore 0;
test-jvm aload 0;
test-jvm getfield x (int);
= (stack-pop (stack-test1)) 5;
test-jvm aload 0;
test-jvm iconst 15;
test-jvm putfield y (int);
= (test-this y get) 15;
stack-push (stack-test1) 7;
stack-push (stack-test1) 10;
test-jvm imul;
test-jvm ireturn;
= (ret-test1 get) 70;
define state-machine-helper /
? at /
lambda (vars stack machine) /
let ((pc (cell new (at)))
(ret (cell new (true)))) /
let ((jvm (jvm-maker (vars) (stack) (pc) (ret))))
(begin
(machine (jvm) (pc get))
(if (= (pc get) -1)
(ret get)
(state-machine-helper (pc get) (vars) (stack) (machine))));
define state-machine (state-machine-helper 0);
stack-push (stack-test1) 10;
stack-push (stack-test1) 33;
= (state-machine (vars-test1) (stack-test1) / ? jvm / ? x
(cond ((= (x) 0) (jvm istore 4))
((= (x) 1) (jvm iload 4))
(jvm ireturn)))
33;
stack-push (stack-test1) 10;
define bytecode-test-mul
(lambda (arg0 arg1) /
let ((vars / cell new / make-hash / vector (pair 0 0) (pair 1 (arg0)) (pair 2 (arg1)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm iload 1))
((= (x) 1) (jvm iload 2))
((= (x) 2) (jvm imul))
((= (x) 3) (jvm ireturn))
(jvm return));
= (bytecode-test-mul 5 9) 45;
54. class translation 'COS_JavaTest'
# Sun Mar 23 02:45:09 CET 2014
# Produced by Fritzifier, based on JasminVisitor
# Using BCEL library to read Java bytecode
# Here is the original code:
# public class COS_JavaTest {
# private int q = 0;
# public int add(int x, int y) {
# return x+y;
# }
# public int sub(int x, int y) {
# return x-y;
# }
# public int mult(int x, int y) {
# return x*y;
# }
# public int addmult(int x, int y, int z) {
# return add(x,mult(y,z));
# }
# public void set(int x) {
# q = x;
# }
# public int get() {
# return q;
# }
# public int fact(int x) {
# return (x>0)?(x*fact(sub(x,1))):1;
# }
# }
#
class COS_JavaTest ()
(field super-ref (make-cell 0))
(method new (set! (super-ref) ((java lang Object) / this)))
(method super (? x / (get! / super-ref) / x))
(method unknown (? x / self super / x))
(field q ((int) new))
(method <init>-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm invokespecial <init>-V 0 0))
((= (x) 2) (jvm aload 0))
((= (x) 3) (jvm iconst 0))
((= (x) 4) (jvm putfield q (int)))
((= (x) 5) (jvm return))
(jvm return))
)
(method <init> (self <init>-V))
(method add-I-I-I
(lambda (arg0 arg1) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)) (pair 2 (arg1)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm iload 1))
((= (x) 1) (jvm iload 2))
((= (x) 2) (jvm iadd))
((= (x) 3) (jvm ireturn))
(jvm return))
)
(method add (self add-I-I-I))
(method sub-I-I-I
(lambda (arg0 arg1) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)) (pair 2 (arg1)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm iload 1))
((= (x) 1) (jvm iload 2))
((= (x) 2) (jvm isub))
((= (x) 3) (jvm ireturn))
(jvm return))
)
(method sub (self sub-I-I-I))
(method mult-I-I-I
(lambda (arg0 arg1) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)) (pair 2 (arg1)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm iload 1))
((= (x) 1) (jvm iload 2))
((= (x) 2) (jvm imul))
((= (x) 3) (jvm ireturn))
(jvm return))
)
(method mult (self mult-I-I-I))
(method addmult-I-I-I-I
(lambda (arg0 arg1 arg2) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)) (pair 2 (arg1)) (pair 3 (arg2)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm iload 1))
((= (x) 2) (jvm aload 0))
((= (x) 3) (jvm iload 2))
((= (x) 4) (jvm iload 3))
((= (x) 5) (jvm invokevirtual mult-I-I-I 2 1))
((= (x) 6) (jvm invokevirtual add-I-I-I 2 1))
((= (x) 7) (jvm ireturn))
(jvm return))
)
(method addmult (self addmult-I-I-I-I))
(method set-I-V
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm iload 1))
((= (x) 2) (jvm putfield q (int)))
((= (x) 3) (jvm return))
(jvm return))
)
(method set (self set-I-V))
(method get-I
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield q (int)))
((= (x) 2) (jvm ireturn))
(jvm return))
)
(method get (self get-I))
(method fact-I-I
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm iload 1))
((= (x) 1) (jvm ifle 11))
((= (x) 2) (jvm iload 1))
((= (x) 3) (jvm aload 0))
((= (x) 4) (jvm aload 0))
((= (x) 5) (jvm iload 1))
((= (x) 6) (jvm iconst 1))
((= (x) 7) (jvm invokevirtual sub-I-I-I 2 1))
((= (x) 8) (jvm invokevirtual fact-I-I 1 1))
((= (x) 9) (jvm imul))
((= (x) 10) (jvm goto 12))
((= (x) 11) (jvm iconst 1))
((= (x) 12) (jvm ireturn))
(jvm return))
)
(method fact (self fact-I-I))
;
55. check that automatic conversion is workable
define test1 (COS_JavaTest new);
# Note that the names of methods include type information. # This could easily be removed, but is retained so that overloading # is possible in the Java code. # I is integer, V is void. The last type in the name is the return type.
= (test1 mult-I-I-I 15 10) 150;
# The type information can be safely omitted if there is no ambiguity
= (test1 mult 15 10) 150;
= (test1 addmult-I-I-I-I 4 15 10) 154;
begin (test1 set-I-V 87) (= (test1 get-I) 87);
= (test1 fact-I-I 0) 1;
= (test1 fact-I-I 1) 1;
= (test1 fact-I-I 5) 120;
# Yay! testing says this works. # So structure for bytecode interpretation is in place. # Very few opcodes actually implemented yet though.
56. another simple little text-adventure space
# let us try to make a slightly more interesting world
define make-table
(lambda (lst)
(crunch (? x / ? h /
assign name (car / x) /
assign obj (cdr / x) /
hash-add (h) (name) (obj))
(append (hash-null) (lst))));
# note, the quoted strings below are just represented as a big number, # nothing special
define geo-map
(make-table
(map
(? name (cons (name) (room new (name))))
(vector "boston" "dublin" "paris" "genoa")));
define my-links
(map
(? entry (assign src (car / entry) /
assign dest (cdr / entry) /
door new (geo-map / src) (geo-map / dest)))
(vector
(cons "boston" "dublin")
(cons "dublin" "paris")
(cons "boston" "paris")
(cons "paris" "genoa")));
define myrobo (robo new);
myrobo set-room (geo-map "dublin");
(equal "dublin" / myrobo get-room name);
myrobo update;
(equal "paris" / myrobo get-room name);
myrobo update;
(equal "genoa" / myrobo get-room name);
myrobo update;
(equal "paris" / myrobo get-room name);
myrobo update;
(equal "boston" / myrobo get-room name);
myrobo update;
(equal "dublin" / myrobo get-room name);
myrobo update;
(equal "paris" / myrobo get-room name);
# all characters should update together
class world (the-places the-links)
(field things (container new))
(field names (cell new (hash-null)))
(field places (cell new 0))
(field links (cell new 0))
(method new
(begin
(places set
(make-table
(map
(? name (cons (name) (room new (name))))
(the-places))))
(links set
(map
(? entry (assign src (car / entry) /
assign dest (cdr / entry) /
door new
(places get / src)
(places get / dest)))
(the-links)))))
(method add (lambda (place name val)
(begin
(val set-room (places get / place))
(val set-name / name)
(names set (hash-add (names get)
(name)
(val)))
(things add (val)))))
(method find (lambda (n) (names get (n) get-room name)))
(method reachable (lambda (place)
(let ((exits
(select-match (lambda (x)
(instanceof door (x)))
(places get (place) inventory))))
(map (? door (door access-from
(places get / place)
name))
(exits)))))
(method update (begin
(map (? x (x update))
(things inventory))
(true)));
define geo-world
(world new
(vector "boston" "dublin" "paris" "genoa")
(vector
(cons "boston" "dublin")
(cons "dublin" "paris")
(cons "boston" "paris")
(cons "paris" "genoa")));
geo-world add "dublin" "robo1" (robo new);
geo-world add "genoa" "robo2" (robo new);
(equal "dublin" / geo-world find "robo1");
(equal "genoa" / geo-world find "robo2");
geo-world update;
(equal "paris" / geo-world find "robo1");
(equal "paris" / geo-world find "robo2");
(equal (vector "paris" "dublin") / geo-world reachable "boston");
(equal (vector "paris") / geo-world reachable "genoa");
57. native implementation of a Java list, hash classes
define flex-equals
(lambda (x y)
(if (number? / x)
(if (number? / y)
(= (x) (y))
(false))
(if (number? / y)
(false)
(x equals (y)))));
define remove-object
(lambda (x)
(remove-match (lambda (y)
(flex-equals (x) (y)))));
define contains-object
(lambda (x lst)
(if (> (list-length / lst) 0)
(if (flex-equals (head / lst) (x))
(true)
(contains-object (x) (tail / lst)))
(false)));
class COS_JList ()
(field super ((java lang Object) new))
(method unknown (lambda (x) (super (x))))
(field contents (cell new (vector)))
(method <init>-V (self))
(method <init> (self <init>-V))
(method add-Object-V (lambda (x)
(contents set (prepend (x) (contents get)))))
(method add (self add-Object-V))
(method remove-Object-Z (lambda (x)
(contents set
(remove-object (x) (contents get)))))
(method remove (self remove-Object-Z))
(method contains-Object-Z (lambda (x)
(contains-object (x) (contents get))))
(method contains (self contains-Object-Z))
(method get-I-Object (lambda (x)
(list-ref (contents get) (x))))
(method get (self get-I-Object))
(method iterator-Iterator (COS_JListIterator new (self)))
(method iterator (self iterator-Iterator))
(method size-V-I (list-length (contents get)))
(method size (self size-V-I));
define test1 (COS_JList new);
begin (test1 add-Object-V (test1))
(= 1 / test1 size-V-I);
test1 == (test1 get-I-Object 0);
class COS_JHashMap ()
(field super ((java lang Object) new))
(method unknown (lambda (x) (super (x))))
(field contents (cell new (? x 0)))
(method <init>-V (self))
(method <init> (self <init>-V))
(method put-Object-Object-V (lambda (x y)
(let ((prev / contents get))
(contents set
(? z
(if (flex-equals (z) (x))
(y)
(prev (z))))))))
(method put (self put-Object-Object-V))
(method get-Object-Object (lambda (x)
(contents get (x))))
(method get (self get-Object-Object));
define test2 (COS_JHashMap new);
begin (test2 put-Object-Object-V 5 10)
(= 10 / test2 get 5);
# There is Java code for COS_JList available
# There is Java code for COS_JHashMap available
58. testing the JList class
define test1 (COS_JList new);
begin (test1 add-Object-V (test1))
(= 1 (test1 size-V-I));
(test1 get-I-Object 0) == (test1);
59. basic iterator implementation
class COS_JListIterator (ref)
(field pipe (cell new (ref contents get)))
(method <init>-V (self))
(method <init> (self <init>-V))
(method hasNext-Z (> (list-length / pipe get) 0))
(method hasNext (self hasNext-Z))
(method next (self next-Object))
(method next-Object
(let ((result (head / pipe get)))
(begin
(pipe set / tail / pipe get)
(result))));
define test1 (COS_JList new);
begin (test1 add 15) (test1 add 72) (test1 add 99) (true);
define iter1 (test1 iterator);
iter1 hasNext;
(equal 99 / iter1 next);
iter1 hasNext;
(equal 72 / iter1 next);
iter1 hasNext;
(equal 15 / iter1 next);
not / iter1 hasNext;
# There is Java code for COS_JListIterator available
60. class translation 'COS_JDoor'
# Sun Mar 23 02:45:10 CET 2014
# Produced by Fritzifier, based on JasminVisitor
# Using BCEL library to read Java bytecode
# Here is the original code:
#
# public class COS_JDoor {
# private COS_JRoom src, dest;
# private String src_cmd, dest_cmd;
#
# public COS_JDoor(COS_JRoom src, String src_cmd,
# COS_JRoom dest, String dest_cmd) {
# this.src = src;
# this.dest = dest;
# this.src_cmd = src_cmd;
# this.dest_cmd = dest_cmd;
# src.addDoor(this);
# dest.addDoor(this);
# }
#
# public COS_JRoom apply(COS_JRoom src, String cmd) {
# if (src == this.src) {
# if (src_cmd.equals(cmd)) {
# return this.dest;
# }
# }
# if (src == this.dest) {
# if (dest_cmd.equals(cmd)) {
# return this.src;
# }
# }
# return null;
# }
#
# public COS_JRoom apply(COS_JRoom src) {
# if (src==this.src) {
# return this.dest;
# }
# if (src==this.dest) {
# return this.src;
# }
# return null;
# }
# }
class COS_JDoor ()
(field super-ref (make-cell 0))
(method new (set! (super-ref) ((java lang Object) / this)))
(method super (? x / (get! / super-ref) / x))
(method unknown (? x / self super / x))
(field src (cell new 0))
(field dest (cell new 0))
(field src_cmd (cell new 0))
(field dest_cmd (cell new 0))
(method <init>-COS_JRoom-String-COS_JRoom-String-V
(lambda (arg0 arg1 arg2 arg3) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)) (pair 2 (arg1)) (pair 3 (arg2)) (pair 4 (arg3)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm invokespecial <init>-V 0 0))
((= (x) 2) (jvm aload 0))
((= (x) 3) (jvm aload 1))
((= (x) 4) (jvm putfield src (COS_JRoom)))
((= (x) 5) (jvm aload 0))
((= (x) 6) (jvm aload 3))
((= (x) 7) (jvm putfield dest (COS_JRoom)))
((= (x) 8) (jvm aload 0))
((= (x) 9) (jvm aload 2))
((= (x) 10) (jvm putfield src_cmd (java lang String)))
((= (x) 11) (jvm aload 0))
((= (x) 12) (jvm aload 4))
((= (x) 13) (jvm putfield dest_cmd (java lang String)))
((= (x) 14) (jvm aload 1))
((= (x) 15) (jvm aload 0))
((= (x) 16) (jvm invokevirtual addDoor-COS_JDoor-V 1 0))
((= (x) 17) (jvm aload 3))
((= (x) 18) (jvm aload 0))
((= (x) 19) (jvm invokevirtual addDoor-COS_JDoor-V 1 0))
((= (x) 20) (jvm return))
(jvm return))
)
(method <init> (self <init>-COS_JRoom-String-COS_JRoom-String-V))
(method apply-COS_JRoom-String-COS_JRoom
(lambda (arg0 arg1) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)) (pair 2 (arg1)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 1))
((= (x) 1) (jvm aload 0))
((= (x) 2) (jvm getfield src (COS_JRoom)))
((= (x) 3) (jvm if_acmpne 12))
((= (x) 4) (jvm aload 0))
((= (x) 5) (jvm getfield src_cmd (java lang String)))
((= (x) 6) (jvm aload 2))
((= (x) 7) (jvm invokevirtual equals-Object-Z 1 1))
((= (x) 8) (jvm ifeq 12))
((= (x) 9) (jvm aload 0))
((= (x) 10) (jvm getfield dest (COS_JRoom)))
((= (x) 11) (jvm areturn))
((= (x) 12) (jvm aload 1))
((= (x) 13) (jvm aload 0))
((= (x) 14) (jvm getfield dest (COS_JRoom)))
((= (x) 15) (jvm if_acmpne 24))
((= (x) 16) (jvm aload 0))
((= (x) 17) (jvm getfield dest_cmd (java lang String)))
((= (x) 18) (jvm aload 2))
((= (x) 19) (jvm invokevirtual equals-Object-Z 1 1))
((= (x) 20) (jvm ifeq 24))
((= (x) 21) (jvm aload 0))
((= (x) 22) (jvm getfield src (COS_JRoom)))
((= (x) 23) (jvm areturn))
((= (x) 24) (jvm aconst_null))
((= (x) 25) (jvm areturn))
(jvm return))
)
(method apply (self apply-COS_JRoom-String-COS_JRoom))
(method apply-COS_JRoom-COS_JRoom
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 1))
((= (x) 1) (jvm aload 0))
((= (x) 2) (jvm getfield src (COS_JRoom)))
((= (x) 3) (jvm if_acmpne 7))
((= (x) 4) (jvm aload 0))
((= (x) 5) (jvm getfield dest (COS_JRoom)))
((= (x) 6) (jvm areturn))
((= (x) 7) (jvm aload 1))
((= (x) 8) (jvm aload 0))
((= (x) 9) (jvm getfield dest (COS_JRoom)))
((= (x) 10) (jvm if_acmpne 14))
((= (x) 11) (jvm aload 0))
((= (x) 12) (jvm getfield src (COS_JRoom)))
((= (x) 13) (jvm areturn))
((= (x) 14) (jvm aconst_null))
((= (x) 15) (jvm areturn))
(jvm return))
)
;
61. class translation 'COS_JThing'
# Sun Mar 23 02:45:11 CET 2014
# Produced by Fritzifier, based on JasminVisitor
# Using BCEL library to read Java bytecode
# Here is the original code:
#
# public class COS_JThing extends COS_JNamed {
# private COS_JRoom location;
# private COS_JRoom nextLocation;
#
# public void setRoom(COS_JRoom location) {
# if (this.location!=null) {
# this.location.removeThing(this);
# }
# this.location = location;
# location.addThing(this);
# this.nextLocation = location;
# }
#
# public COS_JRoom getRoom() {
# return location;
# }
#
# public void setNextRoom(COS_JRoom location) {
# nextLocation = location;
# }
#
# public void postUpdate() {
# if (nextLocation!=location) {
# setRoom(nextLocation);
# }
# }
# }
#
class COS_JThing ()
(field super-ref (make-cell 0))
(method new (set! (super-ref) ((COS_JNamed) / this)))
(method super (? x / (get! / super-ref) / x))
(method unknown (? x / self super / x))
(field location (cell new 0))
(field nextLocation (cell new 0))
(method <init>-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm invokespecial <init>-V 0 0))
((= (x) 2) (jvm return))
(jvm return))
)
(method <init> (self <init>-V))
(method setRoom-COS_JRoom-V
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield location (COS_JRoom)))
((= (x) 2) (jvm ifnull 7))
((= (x) 3) (jvm aload 0))
((= (x) 4) (jvm getfield location (COS_JRoom)))
((= (x) 5) (jvm aload 0))
((= (x) 6) (jvm invokevirtual removeThing-COS_JThing-V 1 0))
((= (x) 7) (jvm aload 0))
((= (x) 8) (jvm aload 1))
((= (x) 9) (jvm putfield location (COS_JRoom)))
((= (x) 10) (jvm aload 1))
((= (x) 11) (jvm aload 0))
((= (x) 12) (jvm invokevirtual addThing-COS_JThing-V 1 0))
((= (x) 13) (jvm aload 0))
((= (x) 14) (jvm aload 1))
((= (x) 15) (jvm putfield nextLocation (COS_JRoom)))
((= (x) 16) (jvm return))
(jvm return))
)
(method setRoom (self setRoom-COS_JRoom-V))
(method getRoom-COS_JRoom
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield location (COS_JRoom)))
((= (x) 2) (jvm areturn))
(jvm return))
)
(method getRoom (self getRoom-COS_JRoom))
(method setNextRoom-COS_JRoom-V
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm aload 1))
((= (x) 2) (jvm putfield nextLocation (COS_JRoom)))
((= (x) 3) (jvm return))
(jvm return))
)
(method setNextRoom (self setNextRoom-COS_JRoom-V))
(method postUpdate-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield nextLocation (COS_JRoom)))
((= (x) 2) (jvm aload 0))
((= (x) 3) (jvm getfield location (COS_JRoom)))
((= (x) 4) (jvm if_acmpeq 9))
((= (x) 5) (jvm aload 0))
((= (x) 6) (jvm aload 0))
((= (x) 7) (jvm getfield nextLocation (COS_JRoom)))
((= (x) 8) (jvm invokevirtual setRoom-COS_JRoom-V 1 0))
((= (x) 9) (jvm return))
(jvm return))
)
(method postUpdate (self postUpdate-V))
;
62. class translation 'COS_JRoom'
# Sun Mar 23 02:45:12 CET 2014
# Produced by Fritzifier, based on JasminVisitor
# Using BCEL library to read Java bytecode
# Here is the original code:
#
# import java.util.Iterator;
#
# public class COS_JRoom extends COS_JNamed {
# //private COS_JList content = new COS_JList();
# //private COS_JList doors = new COS_JList();
#
# private COS_JList content;
# private COS_JList doors;
#
# public COS_JRoom() {
# content = new COS_JList();
# doors = new COS_JList();
# }
#
# public COS_JList get() {
# return content;
# }
#
# public Iterator getDoors() {
# return doors.iterator();
# }
#
# public void addDoor(COS_JDoor door) {
# //System.out.println("add door -> " + getName());
# doors.add(door);
# }
#
# public void addThing(COS_JThing thing) {
# content.add(thing);
# }
#
# public void removeThing(COS_JThing thing) {
# content.remove(thing);
# }
# }
class COS_JRoom ()
(field super-ref (make-cell 0))
(method new (set! (super-ref) ((COS_JNamed) / this)))
(method super (? x / (get! / super-ref) / x))
(method unknown (? x / self super / x))
(field content (cell new 0))
(field doors (cell new 0))
(method <init>-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm invokespecial <init>-V 0 0))
((= (x) 2) (jvm aload 0))
((= (x) 3) (jvm new (COS_JList)))
((= (x) 4) (jvm dup))
((= (x) 5) (jvm invokespecial <init>-V 0 0))
((= (x) 6) (jvm putfield content (COS_JList)))
((= (x) 7) (jvm aload 0))
((= (x) 8) (jvm new (COS_JList)))
((= (x) 9) (jvm dup))
((= (x) 10) (jvm invokespecial <init>-V 0 0))
((= (x) 11) (jvm putfield doors (COS_JList)))
((= (x) 12) (jvm return))
(jvm return))
)
(method <init> (self <init>-V))
(method get-COS_JList
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield content (COS_JList)))
((= (x) 2) (jvm areturn))
(jvm return))
)
(method get (self get-COS_JList))
(method getDoors-Iterator
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield doors (COS_JList)))
((= (x) 2) (jvm invokevirtual iterator-Iterator 0 1))
((= (x) 3) (jvm areturn))
(jvm return))
)
(method getDoors (self getDoors-Iterator))
(method addDoor-COS_JDoor-V
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield doors (COS_JList)))
((= (x) 2) (jvm aload 1))
((= (x) 3) (jvm invokevirtual add-Object-V 1 0))
((= (x) 4) (jvm return))
(jvm return))
)
(method addDoor (self addDoor-COS_JDoor-V))
(method addThing-COS_JThing-V
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield content (COS_JList)))
((= (x) 2) (jvm aload 1))
((= (x) 3) (jvm invokevirtual add-Object-V 1 0))
((= (x) 4) (jvm return))
(jvm return))
)
(method addThing (self addThing-COS_JThing-V))
(method removeThing-COS_JThing-V
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield content (COS_JList)))
((= (x) 2) (jvm aload 1))
((= (x) 3) (jvm invokevirtual remove-Object-Z 1 1))
((= (x) 4) (jvm pop))
((= (x) 5) (jvm return))
(jvm return))
)
(method removeThing (self removeThing-COS_JThing-V))
;
63. class translation 'COS_JNamed'
# Sun Mar 23 02:45:13 CET 2014
# Produced by Fritzifier, based on JasminVisitor
# Using BCEL library to read Java bytecode
# Here is the original code:
#
# public class COS_JNamed {
# private String name = "-";
# private COS_JWorld world = null;
#
# void setName(String name) {
# this.name = name;
# }
#
# String getName() {
# return name;
# }
#
# void setWorld(COS_JWorld world) {
# this.world = world;
# }
#
# COS_JWorld getWorld() {
# return world;
# }
#
# void update() {
# }
#
# void postUpdate() {
# }
# }
class COS_JNamed ()
(field super-ref (make-cell 0))
(method new (set! (super-ref) ((java lang Object) / this)))
(method super (? x / (get! / super-ref) / x))
(method unknown (? x / self super / x))
(field name (cell new 0))
(field world (cell new 0))
(method <init>-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm invokespecial <init>-V 0 0))
((= (x) 2) (jvm aload 0))
((= (x) 3) (jvm ldc (String new int-init "-")))
((= (x) 4) (jvm putfield name (java lang String)))
((= (x) 5) (jvm aload 0))
((= (x) 6) (jvm aconst_null))
((= (x) 7) (jvm putfield world (COS_JWorld)))
((= (x) 8) (jvm return))
(jvm return))
)
(method <init> (self <init>-V))
(method setName-String-V
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm aload 1))
((= (x) 2) (jvm putfield name (java lang String)))
((= (x) 3) (jvm return))
(jvm return))
)
(method setName (self setName-String-V))
(method getName-String
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield name (java lang String)))
((= (x) 2) (jvm areturn))
(jvm return))
)
(method getName (self getName-String))
(method setWorld-COS_JWorld-V
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm aload 1))
((= (x) 2) (jvm putfield world (COS_JWorld)))
((= (x) 3) (jvm return))
(jvm return))
)
(method setWorld (self setWorld-COS_JWorld-V))
(method getWorld-COS_JWorld
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield world (COS_JWorld)))
((= (x) 2) (jvm areturn))
(jvm return))
)
(method getWorld (self getWorld-COS_JWorld))
(method update-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm return))
(jvm return))
)
(method update (self update-V))
(method postUpdate-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm return))
(jvm return))
)
(method postUpdate (self postUpdate-V))
;
64. class translation 'COS_JWorld'
# Sun Mar 23 02:45:14 CET 2014
# Produced by Fritzifier, based on JasminVisitor
# Using BCEL library to read Java bytecode
# Here is the original code:
#
# import java.util.Iterator;
#
# public class COS_JWorld {
# private COS_JHashMap content;
# private COS_JList inventory;
#
# public COS_JWorld() {
# content = new COS_JHashMap();
# inventory = new COS_JList();
# }
#
# public void add(COS_JNamed named, String name) {
# named.setName(name);
# content.put(named.getName(),named);
# inventory.add(named);
# }
#
# public COS_JNamed get(String name) {
# return (COS_JNamed)content.get(new String(name));
# }
#
# public void update() {
# for (Iterator i = inventory.iterator(); i.hasNext(); ) {
# COS_JNamed o = (COS_JNamed) i.next();
# o.update();
# }
# for (Iterator i = inventory.iterator(); i.hasNext(); ) {
# COS_JNamed o = (COS_JNamed) i.next();
# o.postUpdate();
# }
# }
# }
class COS_JWorld ()
(field super-ref (make-cell 0))
(method new (set! (super-ref) ((java lang Object) / this)))
(method super (? x / (get! / super-ref) / x))
(method unknown (? x / self super / x))
(field content (cell new 0))
(field inventory (cell new 0))
(method <init>-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm invokespecial <init>-V 0 0))
((= (x) 2) (jvm aload 0))
((= (x) 3) (jvm new (COS_JHashMap)))
((= (x) 4) (jvm dup))
((= (x) 5) (jvm invokespecial <init>-V 0 0))
((= (x) 6) (jvm putfield content (COS_JHashMap)))
((= (x) 7) (jvm aload 0))
((= (x) 8) (jvm new (COS_JList)))
((= (x) 9) (jvm dup))
((= (x) 10) (jvm invokespecial <init>-V 0 0))
((= (x) 11) (jvm putfield inventory (COS_JList)))
((= (x) 12) (jvm return))
(jvm return))
)
(method <init> (self <init>-V))
(method add-COS_JNamed-String-V
(lambda (arg0 arg1) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)) (pair 2 (arg1)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 1))
((= (x) 1) (jvm aload 2))
((= (x) 2) (jvm invokevirtual setName-String-V 1 0))
((= (x) 3) (jvm aload 0))
((= (x) 4) (jvm getfield content (COS_JHashMap)))
((= (x) 5) (jvm aload 1))
((= (x) 6) (jvm invokevirtual getName-String 0 1))
((= (x) 7) (jvm aload 1))
((= (x) 8) (jvm invokevirtual put-Object-Object-V 2 0))
((= (x) 9) (jvm aload 0))
((= (x) 10) (jvm getfield inventory (COS_JList)))
((= (x) 11) (jvm aload 1))
((= (x) 12) (jvm invokevirtual add-Object-V 1 0))
((= (x) 13) (jvm return))
(jvm return))
)
(method add (self add-COS_JNamed-String-V))
(method get-String-COS_JNamed
(lambda (arg0) /
let ((vars / cell new / make-hash / vector
(pair 0 (self)) (pair 1 (arg0)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield content (COS_JHashMap)))
((= (x) 2) (jvm new (java lang String)))
((= (x) 3) (jvm dup))
((= (x) 4) (jvm aload 1))
((= (x) 5) (jvm invokespecial <init>-String-V 1 0))
((= (x) 6) (jvm invokevirtual get-Object-Object 1 1))
((= (x) 7) (jvm checkcast (COS_JNamed)))
((= (x) 8) (jvm areturn))
(jvm return))
)
(method get (self get-String-COS_JNamed))
(method update-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm getfield inventory (COS_JList)))
((= (x) 2) (jvm invokevirtual iterator-Iterator 0 1))
((= (x) 3) (jvm astore 1))
((= (x) 4) (jvm aload 1))
((= (x) 5) (jvm invokeinterface hasNext-Z 0 1 1))
((= (x) 6) (jvm ifeq 14))
((= (x) 7) (jvm aload 1))
((= (x) 8) (jvm invokeinterface next-Object 0 1 1))
((= (x) 9) (jvm checkcast (COS_JNamed)))
((= (x) 10) (jvm astore 2))
((= (x) 11) (jvm aload 2))
((= (x) 12) (jvm invokevirtual update-V 0 0))
((= (x) 13) (jvm goto 4))
((= (x) 14) (jvm aload 0))
((= (x) 15) (jvm getfield inventory (COS_JList)))
((= (x) 16) (jvm invokevirtual iterator-Iterator 0 1))
((= (x) 17) (jvm astore 1))
((= (x) 18) (jvm aload 1))
((= (x) 19) (jvm invokeinterface hasNext-Z 0 1 1))
((= (x) 20) (jvm ifeq 28))
((= (x) 21) (jvm aload 1))
((= (x) 22) (jvm invokeinterface next-Object 0 1 1))
((= (x) 23) (jvm checkcast (COS_JNamed)))
((= (x) 24) (jvm astore 2))
((= (x) 25) (jvm aload 2))
((= (x) 26) (jvm invokevirtual postUpdate-V 0 0))
((= (x) 27) (jvm goto 18))
((= (x) 28) (jvm return))
(jvm return))
)
(method update (self update-V))
;
65. class translation 'COS_JRobo'
# Sun Mar 23 02:45:16 CET 2014
# Produced by Fritzifier, based on JasminVisitor
# Using BCEL library to read Java bytecode
# Here is the original code:
#
# import java.util.Iterator;
#
# public class COS_JRobo extends COS_JThing {
# private COS_JHashMap times;
# private int now;
#
# public COS_JRobo() {
# times = new COS_JHashMap();
# now = 1;
# }
#
# public void update() {
# COS_JRoom location = getRoom();
# //System.out.println("Updating robo...");
# if (location!=null) {
# int oldestTime = now;
# COS_JDoor oldestDoor = null;
# for (Iterator i = location.getDoors(); i.hasNext(); ) {
# COS_JDoor door = (COS_JDoor) i.next();
# //System.out.println(" scanning door ");
# Integer t = (Integer)times.get(door);
# int v = 0;
# if (t!=null) {
# v = t.intValue();
# }
# if (v<oldestTime) {
# oldestTime = v;
# oldestDoor = door;
# }
# }
# if (oldestDoor!=null) {
# times.put(oldestDoor,new Integer(now));
# setNextRoom(oldestDoor.apply(location));
# }
# }
# now++;
# }
# }
#
class COS_JRobo ()
(field super-ref (make-cell 0))
(method new (set! (super-ref) ((COS_JThing) / this)))
(method super (? x / (get! / super-ref) / x))
(method unknown (? x / self super / x))
(field times (cell new 0))
(field now ((int) new))
(method <init>-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm invokespecial <init>-V 0 0))
((= (x) 2) (jvm aload 0))
((= (x) 3) (jvm new (COS_JHashMap)))
((= (x) 4) (jvm dup))
((= (x) 5) (jvm invokespecial <init>-V 0 0))
((= (x) 6) (jvm putfield times (COS_JHashMap)))
((= (x) 7) (jvm aload 0))
((= (x) 8) (jvm iconst 1))
((= (x) 9) (jvm putfield now (int)))
((= (x) 10) (jvm return))
(jvm return))
)
(method <init> (self <init>-V))
(method update-V
(lambda () /
let ((vars / cell new / make-hash / vector
(pair 0 (self)))
(stack / cell new / vector)) /
state-machine (vars) (stack) / ? jvm / ? x / cond
((= (x) 0) (jvm aload 0))
((= (x) 1) (jvm invokevirtual getRoom-COS_JRoom 0 1))
((= (x) 2) (jvm astore 1))
((= (x) 3) (jvm aload 1))
((= (x) 4) (jvm ifnull 57))
((= (x) 5) (jvm aload 0))
((= (x) 6) (jvm getfield now (int)))
((= (x) 7) (jvm istore 2))
((= (x) 8) (jvm aconst_null))
((= (x) 9) (jvm astore 3))
((= (x) 10) (jvm aload 1))
((= (x) 11) (jvm invokevirtual getDoors-Iterator 0 1))
((= (x) 12) (jvm astore 4))
((= (x) 13) (jvm aload 4))
((= (x) 14) (jvm invokeinterface hasNext-Z 0 1 1))
((= (x) 15) (jvm ifeq 41))
((= (x) 16) (jvm aload 4))
((= (x) 17) (jvm invokeinterface next-Object 0 1 1))
((= (x) 18) (jvm checkcast (COS_JDoor)))
((= (x) 19) (jvm astore 5))
((= (x) 20) (jvm aload 0))
((= (x) 21) (jvm getfield times (COS_JHashMap)))
((= (x) 22) (jvm aload 5))
((= (x) 23) (jvm invokevirtual get-Object-Object 1 1))
((= (x) 24) (jvm checkcast (java lang Integer)))
((= (x) 25) (jvm astore 6))
((= (x) 26) (jvm iconst 0))
((= (x) 27) (jvm istore 7))
((= (x) 28) (jvm aload 6))
((= (x) 29) (jvm ifnull 33))
((= (x) 30) (jvm aload 6))
((= (x) 31) (jvm invokevirtual intValue-I 0 1))
((= (x) 32) (jvm istore 7))
((= (x) 33) (jvm iload 7))
((= (x) 34) (jvm iload 2))
((= (x) 35) (jvm if_icmpge 40))
((= (x) 36) (jvm iload 7))
((= (x) 37) (jvm istore 2))
((= (x) 38) (jvm aload 5))
((= (x) 39) (jvm astore 3))
((= (x) 40) (jvm goto 13))
((= (x) 41) (jvm aload 3))
((= (x) 42) (jvm ifnull 57))
((= (x) 43) (jvm aload 0))
((= (x) 44) (jvm getfield times (COS_JHashMap)))
((= (x) 45) (jvm aload 3))
((= (x) 46) (jvm new (java lang Integer)))
((= (x) 47) (jvm dup))
((= (x) 48) (jvm aload 0))
((= (x) 49) (jvm getfield now (int)))
((= (x) 50) (jvm invokespecial <init>-I-V 1 0))
((= (x) 51) (jvm invokevirtual put-Object-Object-V 2 0))
((= (x) 52) (jvm aload 0))
((= (x) 53) (jvm aload 3))
((= (x) 54) (jvm aload 1))
((= (x) 55) (jvm invokevirtual apply-COS_JRoom-COS_JRoom 1 1))
((= (x) 56) (jvm invokevirtual setNextRoom-COS_JRoom-V 1 0))
((= (x) 57) (jvm aload 0))
((= (x) 58) (jvm dup))
((= (x) 59) (jvm getfield now (int)))
((= (x) 60) (jvm iconst 1))
((= (x) 61) (jvm iadd))
((= (x) 62) (jvm putfield now (int)))
((= (x) 63) (jvm return))
(jvm return))
)
(method update (self update-V))
;
66. test JRoom, JDoor, JThing, etc
define s (? x / String new int-init / x);
define room1 (COS_JRoom new <init>);
define room2 (COS_JRoom new <init>);
define door12 (COS_JDoor new <init>
(room1) (s "south") (room2) (s "north"));
define jworld (COS_JWorld new <init>);
define thing1 (COS_JThing new <init>);
define robo1 (COS_JRobo new <init>);
act / jworld add (thing1) / s "bus";
act / jworld add (robo1) / s "autobus";
act / jworld add (room1) / s "boston";
act / jworld add (room2) / s "newyork";
begin (room1 get add (room1))
(= 1 / room1 get size);
= 1 / room1 get size;
= 0 / room2 get size;
act / thing1 setRoom (room1);
= 2 / room1 get size;
= 0 / room2 get size;
act / thing1 setRoom (room2);
room1 get size;
room2 get size;
thing1 equals (thing1);
room1 equals (room1);
not / thing1 equals (room1);
(equal "newyork" / door12 apply (room1) (s "south") getName intValue);
(equal "boston" / door12 apply (room2) (s "north") getName intValue);
define o (? x / jworld get / s / x);
= "newyork" / (o "bus") getRoom getName intValue;
act / robo1 setRoom (room1);
(equal "boston" / (o "autobus") getRoom getName intValue);
act / jworld update;
(equal "newyork" / (o "autobus") getRoom getName intValue);